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Abstract

In complex and dynamic markets, most of the opponents have never interacted before and it is hard to
estimate for them wether they can trust each other. We present a distributed framework where agents
play the Non-Iterated Prisoner’s Dilemma. We propose that agents can ask other agents they already
trust if the current opponent can be trusted. These neighbours can in turn ask their neighbours. This
process can be iterated until someone knows the opponent, thus a trusted information chain is built. Such
a chain has the advantage that no remote messages from completely untrusted sources are used to decide
about someones trustability. We show that this framework is computationally feasible, if the agents
are connected in a Small World Network. In our framework, such a network evolves and information
chains can successfully be built within. We test a strategy using this framework against several default
strategies and show that it can very well succeed.

1 Introduction

In real interactions between humans, trust is an im-
portant notion. We feel best about an upcoming in-
teraction if we can rely on previous interactions with
our trade partner. Whenever we didn’t have one,
we try to find out if someone we do already trust
has experienced good interactions with him or knows
somebody who has. In complex and dynamic mar-
kets, we seldom know our trade partners, so we try
to find such chains of trust judgements every day. If
we find one, using it to judge wether the interaction
can be trusted might protect us from fraud.

We combine two concepts in recent scientific re-
search to model such a world: The Non-Iterated Pris-
oner’s Dilemma and Small World Networks. Through
ongoing interactions, a Small World Network is
evolved, which makes it feasible to obtain informa-
tion about opponents. Our goal is to design a fully
distributed framework in which cooperative agents
would have a potential to cope with lying agents and
frauding cartels. This is a design study to explore
this research path and the success of such a strategy.

1.1 Concepts

The Prisoner’s Dilemma is a non-zero-sum game
with two players. It depicts a situation where both
opponents need to decide if they cooperate or de-
fect (see section 3 for a payoff matrix). Both would
achieve the most if they defect while the other co-
operates and perform worst if it is the other way
around. The overall payoff is the highest for a situa-
tion where both cooperate. The clue is that a short-
term rational decision is to defect, while in iterated
games overall cooperational behaviour also achieves
the best returns for individuals. In the non-iterated
version, there is no guarantee that the players will
ever see each other again. How can cooperation
evolve nonetheless?

Small World Networks describe a phenomenon
that seems to be inherent to human societies: The
(social) network is connected in such a way that ev-
ery node is reachable from every other node within a
small number of steps (small when compared to the
network size - see Figure 1(a) for an example). This
property of a network is called the “shortest average
path length”. Another property is the “clustering in-
dex”, which is calculated by the average number of
neighbours that also know each other.
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(a) (b) (c)

Figure 1: Left: A Small World Network. Shortcuts between remote agents make short average path lengths possible.
Middle: Two agents that are about to play and need to decide if to cooperate -c- or defect -d-. Both manage to find
a chain of trust (dotted) to someone who knows their opponent (dashed). Then, the information is passed back along
the chain (straight). Right: Values in trust table for an opponent starting with 0.1, continued by 10 cooperations.

1.2 Previous Research

Formal research in cooperation of rational individu-
als was first introduced in Game Theory which was
developed by Von Neumann and Morgenstern [9] in
the 1940s. The Prisoner’s dilemma is a classic Game
Theory setup in which cooperation is often stud-
ied. The history of computational cooperation re-
search goes back to the early 1980s [3]. Axelrod
held tournaments of competing strategies, from which
the simple Tit-For-Tat strategy emerged as the most
successful. This strategy is ’nice’ in general, but
will retaliate defection immediately. To prevent all-
defecting strategies from winning mixed-population
tournaments, the notion of trust became an impor-
tant issue (e.g. [7, 8, 1]).

Small-World Networks, described by Watts and
Strogatz [10], have been very popular since the end
of the 1990s, also amongst cooperation researchers,
e.g. [2]. A very recent trend is to encode trust in
the network structure (e.g. [4]). For example, in
Ellis’ and Yao’s approach, players ask neighbours of
the opponent to verify his trustworthiness. They can
contact these neighbours through a central authority.
These approaches are effective regarding the perfor-
mance, however they have some unpleasant charac-
teristics (e.g. they require a central authority, they
are potentially very vulnerable to cartels of defectors
that issue each other high trustability values).

2 Model

In our model, agents play rounds of the Prisoner’s
Dilemma with random opponents and receive payoff.

Periodically, we perform evolutionary replacements
on the population to translate payoff success into
numerical representation in the population.

Our model is distributed - agents do not need to
contact a central authority. Instead, agents with our
strategy try to ask other agents if they know the op-
ponent. If they don’t, they can ask someone they
know (every agent keeps a trust table in which he
lists some neighbours and how much he trusts them).
Every agent (B) can be asked by some other agent
(A) about the trustability of a particular opponent
(C). If agent B doesn’t have information on agent C
in his trust table, then he will in turn ask another
agent (D). From the trust table of B, agent D is se-
lected by maximising the formula

dist bias ∗ dist(D,C) + trust bias ∗ trust(B,D)

This formula balances a tradeoff between effect and
safety. Clearly, the higher the bias on distance, the
more probable it is that the opponent will be reached
soon. On the other hand, high bias on trust might
produce more reliable chains but it is also more likely
to fail in finding the opponent at all.
In the tradition of Axelrod’s research [3], our agents
will default to cooperation if no information on the
opponent is accessible. Furthermore, when the in-
teraction is finished, agents update the value for the
opponent in their trust table according to

if (coop) then new trust = old trust+
(1− old trust)

2

if (def) then new trust = old trust− (old trust)
2
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This results in a sigmoid curve (Figure 1(c)). If the
opponent changes his behaviour, it will have a quick
effect on the trust in him, relating to Tit-For-Tat.

Note : We named our strategy nuts (Nicolas und
Tomas Strategy) and its less smart version (which
only looks in the own trust table) nuts dummy.
Other strategies we employ in different scenarios are
AlwaysDefect (AD) and AlwaysCooperate (AC).

2.1 Relation to the real world

There are many real-world examples of trust-based
social networks based on the repeated Non-Iterated
Prisoner’s dilemma, e.g. peer-to-peer networks, so-
cial networks behind online auctioneering systems,
. . . Our model could resemble an online auctioneering
system where users announce what they want to sell
and afterwards are contacted by other users willing
to buy. The analogies with our model are clear:

• The actions of users represent actions in the
Non-Iterated Prisoner’s Dilemma. Sending the
money for goods is cooperation, whilst not
sending money is defection. Similarly, sending
goods is cooperation, whilst not sending any-
thing is defection.

• Users tend to know other users with similar in-
terest (which in our model is resembled by a
simple metric).

• Users keep information on some particular
agents they have interacted with in the past
(the trust table in our model), most likely ones
that are similar to them.

• Users would like to get information on a person
they are about to trade with (the information
chains in our model).

Our model introduces one more phenomenon. This
is the evolutionary replacement of weak agents by
stronger ones. However, it is not impossible to imag-
ine that there is only a limited number of users that
can participate and also there are users waiting to
enter the system when some of the users in the sys-
tem are out of money. This could be understood as
an analogy of the implemented evolutionary replace-
ment.

2.2 Procedure

Or simulations proceed as follows:
Initialise N individuals

Initialise the world: According to the scenario, as-
sign strategies uniformly to randomly picked agents
for r in 1 . . .N ∗ 4 rounds do

for i in 1 . . .N/2 do
Select an agent i and an opponent j to play
against (see also section 2.3 below).
Agents i and j try to find out if their opponent
can be trusted (if they are nuts agents).
Agents i and j decide wether they cooperate
or defect.
Agents i and j receive payoffs and update their
trust tables according to their opponents’ ac-
tion.

end for
if (N ∗ 4)%e == 0 then

Evolutionary update: Select two agents and
replace the poorer one with a copy of the other

end if
end for

2.3 Evolving and using the Small
World Network

We would like to evolve the underlying network into
a Small World Network. Such a structure can be
characterised by low average path lengths L (compa-
rable to L of a random graph of the same size) and a
high clustering coefficient C (much higher than C of
a random graph). Advantages of such a structure for
our framework are obvious: An agent should be able
to build a short information chain connecting him to
the desired opponent. In particular, we set two goals
for a network of size N :

1. The information about neighbours that every
single agent maintains about should be small
(O(logN ∗

√
logN))

2. Retrieving information from the network should
be fast (O(logN) or constant - given in Small
World Networks)

The default way of building a Small World Network
structure is to mostly connect neighbouring agents,
and sometimes (according to some probability) re-
mote agents [10]. In this model, we follow a more
precise approach by Kleinberg [6] to evolve it using
a distance metric. This metric works in the sense
that agent A should have a higher probability to play
against or know agent B than agent C if the distance
d(A,B) is lower than d(A,C). Kleinberg calculated
that probability with 1

d(A,B)α .
When agents build information chains (making use
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of the evolved network structure), it is also neces-
sary that they have a method of choosing which of
their neighbours would be most appropriate for ”get-
ting closer” to the desired opponent. They can use
the metric to help them decide who is most likely to
know him.
The optimal setting for α to evolve a Small World
Network is around 2. However, our model needs this
metric for two purposes, building the network and
information chains. In our first experiments, agents
already knew their opponents too often, such that
information chains weren’t necessary. To resemble a
more realistic situation, we split α. We used less bias
to locality when building up the network (α, around
1.0) and more bias to locality when agents decide who
their closest friends are (β, around 2) - i.e. to decide
who to keep in the list of neighbours.

3 Experimental Design

We used a simple comparative experimental design.
The simulations were run 20 times for each experi-
mental setting.

Independent Variables
.

variable possible values
N: # of individuals [150, 300]
K: # of neighbours [0.7 ∗ logN ∗

√
logN ,

1.1 ∗ logN ∗
√
logN ]

α: network [0.9, 1.2]
β: network [1.9, 2.4]

strategy scenarios [( 1
2AD, 1

2nuts),
( 1
3AC, 1

3AD, 1
3nuts),

( 1
3AD, 1

3nuts, 1
3nuts dummy)]

bias to distance [0.3, 0.7 ]
when asking

In effect, we had 2 ∗ 2 ∗ 2 ∗ 2 ∗ 3 ∗ 2 = 96 different
settings.

Dependent Variables

variable comment
L average path length

NP # of not connected pairs of agents
C clustering index of network

SN # of agents of particular strategies
SP average payoff of the strategy

Fixed Variables

variable value
limit of steps in asking 6
chain trust threshold 0.3

opponent trust threshold 0.5
# of epochs 4 * N

e: rounds until evol. update 3
bias to trust when asking 1 - dist. bias

steepness of trust update function 2

The payoff matrix is also a fixed variable. It is
the standard payoff matrix for a game of Prisoner’s
dilemma, taken from [3]:

A B payoff for A
traitor benefit (t) D C 5

reward (r) C C 3
punishment (p) D D 1
sucker payoff (s) C D 0

4 Results

This section reviews our research hypotheses and
states in what manner we have achieved them (full
set of results at [5]).

• Hypothesis 1: The underlying structure
will evolve to a small-world network.
Holds. In every simulation we ran, the net-
work parameters achieved acceptable values.
Small World Networks have L ' Lrandom, but
C >> Crandom (see [10] for details). The ta-
ble below shows the network parameters at
the end, averaged over all our simulations.

L Lrandom C Crandom

N = 150,K = 13 2.46 2.19 0.30 0.08
N = 150,K = 21 2.03 1.89 0.29 0.13
N = 300,K = 16 2.62 2.33 0.29 0.05
N = 300,K = 25 2.20 2.01 0.26 0.08

• Hypothesis 2: Informed strategies will
survive in various populations.
The simple explanation is that this doesn’t
necessary hold. Simply averaged over all con-
figurations, our strategy achieves to represent
55.8% of the population at the end of the sim-
ulations. That is not a bad value. If we look
closer, we see that the success depends on the
particular population scenario.

If we only look at strategy scenario 1, nuts ver-
sus AlwaysDefect, we find that nuts wins by
far. We conducted a Welsh Two-Sample T-Test
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(a) N = 150 (b) N = 300

Figure 2: AlwaysDefect vs nuts in scenario 1 (AD, nuts)

(a) N = 150 (b) N = 300

Figure 3: AlwaysDefect vs nuts in scenario 2 (AC, AD, nuts)

(a) N = 150 (b) N = 300

Figure 4: nuts vs nuts dummy in scenario 3 (AD, nuts, nuts dummy)
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(t = 51.1728, df = 712.562, p-value < 2.2e−16)
to test on the difference of the population rep-
resentation of both strategies in the end of runs
in Scenario 1. These results show that signifi-
cant differences appeared here (The mean pop-
ulation size of nuts was 183.99 and the mean
population size of AlwaysDefect was 28.41).
Figure 2 shows the differences over the whole
runs.
But if we look at these two strategies in the
2nd scenario, where also an always-cooperating
strategy was involved, the picture is different.
Nuts loses to AlwaysDefect. We conducted
another Welsh Two-Sample T-Test like the
above, only regarding the second scenario (t =
28.7613, df = 1024.961, p-value < 2.2e − 16).
Here, the AlwaysDefect strategy will signifi-
cantly outnumber the nuts strategy (the mean
population size of nuts was 63.47 and the mean
population size of AlwaysDefect was 142.78.
Figure 3 shows the differences over the whole
runs.
We conclude that defecting strategies profit
much more from the presence of “dumb”, often-
cooperating strategies than the nuts strategy.
In the context of the Prisoners Dilemma, this
means that our strategy doesn’t exploit coop-
erators as much as defectors do. Our strategy
should recover once pure cooperators die out
(and then the setting is the same as in scenario
1).

• Hypothesis 3: Information chains in-
crease the success of an informed strat-
egy.
This hypothesis holds. We conducted a
Welsh Two-Sample T-Test (t = 27.082, df =
1032.923, p-value < 2.2e−16) to test on the dif-
ference of the population representation of both
nuts - strategies in the end of runs in Scenario
3 (AD, nuts, nuts dummy). The results show
with strong significance that the nuts strategy
that makes use of the information chains will
outnumber the “dumb” nuts dummy - strat-
egy. The mean of nuts was 125.75 and the mean
of nuts dummy was 58.78. Figure 4 shows the
differences over the whole runs.

5 Conclusions

We proposed and implemented a distributed reputa-
tion system, which evolves a Small World Network.
Under various circumstances, we tested the perfor-

mance of a strategy that is generally forgiving but
tries to gather information via the network. We
showed some simple cases in which it is successful and
which cases can be problematic in the short term. By
evolving a Small World Network, we showed that this
approach can be computationally feasible.
Of course, further research would deal with more var-
ious strategy scenarios and experiment with perfor-
mance against ”lying strategies” and possibly cartels.
Regarding the distributed nature of the framework,
in which trust information is only passed along local
connections, we suspect this to be a fruitful path of
research.
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