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Abstract
The Iterated Prisoner’s Dilemma (IPD) is a well-known challenging problem for researching multi-agent
interactions in competitive and cooperative situations. In this paper, we present the Ask-First (AF) strategy
for playing multi-agent non-Iterated PD (nIPD) that is based on evolving trust chains between agents. Each
agent maintains a (relatively small) table containing trust values of other agents. When agents are to play
each other, they ask their neighbours what trust they put in the opponent. Chains are then followed until
an agent is found that knows the opponent and the trust value is propagated back through the chain. The
played move is then decided based upon this trust value. When two agents have played each other, they
update their trust tables on the basis of the outcome of the game. The strategy is first evaluated in a
benchmark scenario where it is shown that it outperforms a number of benchmark strategies. Secondly,
we evaluate the strategy in a scenario with a group of colluding agents. The experiments show that the
AF strategy is successful here as well. We conclude that the AF strategy is a highly flexible, scalable and
distributed way (the chain topology adapts to the way that agents are picked to play each other) to deal
with a difficult multi-agent nIPD problem (i.e., robust against collusions).

1 Introduction
In open e-commerce systems (e.g., an electronic market), collusion is a serious threat to the honest operation
of the system. Collusion is the agreement between two or more persons to deceive others to obtain an
secretive (or: illegal) objective. On eBay, this happens by so-called shil bidding, where friends of the
seller bid on an item solely with the intention to raise the price. These friends can even be other eBay
accounts of the seller himself and not necessarily real persons. Another example of collusion happens when
in recommender systems, items are evaluated positively by the seller’s friends (which may, again, be fake
accounts of the seller). In such situations, it is very important for a potential buyer (who is truthful) to judge
the reliability of the bids or the recommendations. Ideally, one wants to achieve this without having to rely
on a trusted third-party or authority.

In this paper, we suggest a way to do exactly this based on the idea of trust networks. In such networks,
agents maintain the trust that they have in each other and communicate this with each other when necessary.
The intuition behind this method is that in real life, we ask our friends how they feel about a certain item
or some particular shop. This intuition has lead us to develop the very simple Ask-First (AF) strategy that
faithful agents can employ to protect them from malicious or unreliable agents.

Within the context of Iterated Prisoner’s Dilemma (IPD), the strategy works as follow (we provide more
detailed information later in the paper). Firstly, an AF strategy agent maintains a (relatively small) table
containing trust values of other agents. Then, when agents are to play each other, they ask their neighbours
what trust they put in the opponent. Next, chains are then followed until an agent is found that knows the
opponent and the trust value is propagated back through the chain. Then, the played move is then decided
based upon this trust value. Finally, when two agents have played each other, they update their trust tables
on the basis of the outcome of the game.

The research objective of this paper is two-fold: 1) to show that the AF agents outperform the benchmark
agents (all-cooperators and all-defectors); and 2) to show that the AF agents outperform collusion agents.
For objective 2), we also want to show that the AF agents use the created network chains effectively and that
colluding agents cannot invade these chains.



This paper has the following structure. In Section 2, we present the background for our work: com-
putational trust and reputation, referral networks and social networks. We also explain the non-Iterated
Prisoner’s Dilemma. Section 3 lays out the details of our framework and the Ask-First (AF) strategy. In
Section 4 we show by a number of experiments the effectiveness of the AF strategy. Finally, in Section 5,
we draw conclusions about the performed study and provide some pointers for future work.

2 Background
The work presented in this paper, builds further on research on computational trust and reputation, referral
networks, and social networks. In this paper, we place all within the context of the Iterated Prisoner’s
Dilemma (IPD). In this Section, we briefly touch upon each of the topics.

2.1 Trust, Reputation and Referral
The concept of trust is essential in societies and open systems in order to maintain ’good’ social interactions
and commitments between individuals. As mentioned above, on eBay, you want to trust the person from
whom you are buying your items. In real life, we have many (albeit implicit, unconscious) mechanisms
operating for managing trust; in virtual life (internet), we have not yet established such mechanisms [1].
Much research in the last decade has been dedicated to the question how to use trust as a mechanism for
regulating social interaction. In the early 1990s, Marsh [7] presented a formalisation of trust that pins down
a number of defining properties of trust in order to facilitate a precise discussion about trust. The formalism
was implemented for a multi-agent system in a PD scenario, demonstrating a recognisable behaviour of trust
among the agents.

An often-used mechanism for managing trust is by means of reputation: a societal indication of how
much you can trust someone, reflecting its past actions. Like the concept of ’trust’, ’reputation’ is a con-
voluted term and needs to be clarified unambiguously for precise discussion and application; Mui et. al
[9] do this by giving a concise overview of the notion within the context of multi-agent systems. In terms
of applications, current major websites (eBay, Amazon) have centralised reputation mechanisms in place,
where people’s ratings about each other are collected, processed and communicated back. However, such
centralisation of reputation is not always possible, e.g., for peer-to-peer service provision [14]. It can be ex-
pected that future systems will become increasingly more open and require such decentralised mechanisms
for maintaining trust and reputation.

A recent development in the search for “decentralised reputation management” concerns so-called refer-
ral networks. In such networks, agents communicate information about trust and reputations are built based
on this information. The networks are used for query-based searching for information and expertise in a
person’s social network [5]. In a referral network, nodes have neighbours (whom they query directly) and
acquaintances (whom they query only when referred to); both sets are dynamic (neighbours can become ac-
quaintences and vice versa) and usually limited. Studies of referral networks by Singh et. al [14] have looked
at how network structure evolved under various circumstances; how agent learning models (enabling agents
to learn about each other in terms of expertise – producing correct answers, and sociability – providing good
referrals) affects the quality of the work; and how to design self-organising referral networks.

2.2 Social Networks
The basis of the referral networks described above is the social network that connects individuals within a
collective system. In such a network of individuals, there are links between these individuals that represent,
for example, friendship, kinship or values. Social network analysis views these networks as graphs, in which
the nodes are individuals and the edges are the links. Within the context of this paper, research on social
networks includes, for example, the study of decentralised search algorithms [6] and investigation of the
relationship between social network topologies and emergent behaviour [2].

A particular stream of research worth mentioning is the investigation of so-called small-world networks.
Since the formalisation of the small world problem (originally coined by Milgram [8]) by Watts and Strogatz
[13] in the nineties, much research on social networks looks at such networks being small-world networks:
it takes relatively few steps to go from one random node to another. This type of networks has two important
properties: a short average path length (hence, the relatively few steps to reach other nodes), and a high
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clustering coefficient (number of a node’s neighbours that also know each other). The experiments presented
later in this paper also consider small-world networks.

2.3 Non-Iterated Prisoner’s Dilemma
The well-known Iterated Prisoner’s Dilemma (IPD) is a generic abstract representation of complex social
dilemmas [3]. It is a (non-zero-sum) game where two players make decisions simultaneously whether to
defect or cooperate and receive rewards based on the combination of their two actions. The ordinance of the
payoffs makes this game a dilemma: [dc] > [cc] > [dd] > [cd], where [xy] denotes the reward for player 1
where player 1 plays x, player 2 plays y and x, y ∈ {c(ooperate), d(efect)}. The dominant strategy for the
one-shot PD (where the game is played once) is for both players to defect. The iterated version of the game
(where it is played for a number of times) does not have a single dominant strategy. In a competition-based
evaluation of the IPD, it was found that an extremely simple strategy beats the other strategy: tit-for-tat,
where the opponent’s last action was simply copied (with default action ‘cooperate’).

In this paper, we have a population of agents that repeatedly plays pairwise PD games. Note, however,
that it is not an implementation of IPD, because the agents change their interaction partner in every round
and have a limited memory of their previous opponents. Like in [4, 12], we call this version the non-Iterated
PD (nIPD).

While in the one-shot and iterated PD it is almost certain that the players will ultimately defect each
other, in the nIPD this is not the case at all. Much research has been done on the evolution of cooperation in
nIPD, addressing the important question how cooperation can arise between selfish agents. Nowak and May
[11] showed that in a two-dimensional cellular automata (where a cell could be in a ’cooperate’ or ’defect’
state) if the PD was used as the update rule, patterns of cooperation and defection emerged. In follow-up
work by Olifant [12], it is shown that in a society of agents, spatiality plays an important role: agents that are
close by each other are more likely to play than those that are further away. This work gives rise to the issue
of how agents are connected to each other: can the structure of the connection network affect the evolution
of cooperation?

In more recent work, Ellis and Yao [4] address this issue by looking at a social network inspired approach
for the evolution of cooperation. In their (non-spatial) nIPD, links are formed between cooperating agents.
These links are reinforced by repeated cooperation, while defection breaks a link. All links taken together
represent the social network of the agents. Ellis and Yao present a strategy that can exploit this network: the
discriminator agent bases its move (cooperate or defect) on the centrality of its opponent. (This centrality
represents the agent’s reputation among its neighbours.) The experiments for this strategy showed that the
discriminator strategy is more successful than all-cooperators or all-defectors. In another series of exper-
iments, agents are able to evolve strategies while playing – ranging from all-cooperate to all-defect. The
evolving parameters included 1) the probability that an agent interacts with another agent that has a lower
reputation than some threshold value, and 2) this threshold. The experiments showed that when agents are
able to observe the centrality, then the population evolves to all-cooperators.

3 The Ask-First Strategy
The main idea of the Ask-First strategy is to ask around before you act. For the nIPD, this means asking
a neighbour for advise about whether to (c)ooperate with or (d)efect an unknown opponent. The asking
process is recursive: when you are asked for advise about someone you do not know either, you forward
the question to a neighbour of your own, and so forth. This asking around leads to so-called information
chains between agents over which trust information is communicated. Note that the recursive nature of
these information chains in our approach sets it apart from referral networks (which were explained above),
because these work iteratively.

The protocol for each agent employing the AF strategy1 involves the following steps: select best neigh-
bour, ask this neighbour for advise, process the advise, play the PD game and do some aftermath (updating).
We describe each of these steps in the following Sections. Before this, we first explain the dynamics of the
social network of the agents.

1In terms of reciprocity, the reputation-based AF strategy is a downward kind of indirect reciprocity [10, p.1292]: individual a has
helped b and therefore receives help from c.
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Network Dynamics We are interested in testing the AF strategy in a set of agents that are connected with
each other through a small-world network. In other words, this paper is not about showing that the evolved
network is small-world; that is our starting point and we show that the AF agents can successfully exploit
such networks. However, we do not want to simply impose the small-world property on the network; instead,
we select PD-playing couples in such a way that a small-world social network evolves. As mentioned above,
small-world networks have low average path lengths L (comparable to L of a random graph of the same size)
and a high clustering coefficientC (much higher thanC of a random graph). For building small-world social
networks, one could follow Watts and Strogatz [13]: often connect neighbouring agents and occasionally
remote agents. Here, we use a more refined method that employs a concept of distance, based on an approach
suggested by Kleinberg [6].

Let us define the concept of distance as follows. Firstly, let each agent x be uniquely identified by an
integer Ix ∈ [1, N ], where N is the total number of agents. We assume that agents whose identifiers are
close to each other are more likely to interact with each other. For example, in the context of eBay agents,
this could express some common interests in goods. In the context of our nIPD agents, it simply means that
close agents are more likely to play each other. Let a distance measure dist(a, b) represent how close agent
a is to agent b; in general: dist(x, y) = min(abs(Ix − Iy), N − abs(Ix − Iy)), where x, y are agents and
Ix, Iy their identifiers, respectively. (Note that this function makes agents I1 and IN close to each other.)

For building small-world networks, agents are connected with each other if there is little distance be-
tween them. In other words. If a, b and c are agents, then a should have a higher probability to be connected
with b then with c if dist(a, b) < dist(a, c). Formally, let x, y be agents and the probability that they are
connected be 1

dist(x,y)α (according to Kleinberg), where α is some given constant; then small-world net-
works emerge when α is around 2. With these notions, we use Kleinberg’s probability-vector approach [6]
to evolve the desired small-world social networks. For the experiments presented below, we have obtained
empirical evidence supporting this. We have not included these measurement for reasons of space.

3.1 Select Best Neighbour
Let an agent a have a neighbourhood Ω, containing the names of at most K other agents. For each of the
agents in the neighbourhood, agent a has assigned a trust value representing how much a trusts this agent:
let this trust value be τ ∈ R, where τ ∈ [0, 1] (representing minimum to maximum trust, respectively). If
agent a plays a neighbour and this neighbour defects, then its trust decreases and vice versa (later we explain
the calculation of this value in detail).

When faced with an opponent o that is not in the agent’s neighbourhood, the agent chooses one of its
neighbours, let this be agent b, to ask for advise about playing o. The choice for a specific neighbour is based
on 1) how much agent a trusts agent b, and 2) what the distance between agents b and z is. We represent the
trust of agent a in agent b by trust(a, b); the distance between them by dist(a, b). The two measurements
are integrated into the function eval(a, b, o) that expresses the evaluation of neighbour b by agent a about
opponent o. In general, eval(a, b, o) = ωtrust ∗ trust(a, b) + ωdistance ∗ (1/dist(b, o)), where a, b ∈ Ω,
o /∈ Ω, ω ∈ [0, 1] and

∑
ω = 1. This function thus weighs trust and distance: the higher the weight of

distance, the more probable it is that the opponent is reached soon; a high weight of trust may produce more
reliable chains but it is also more likely to fail in finding the opponent at all. Finally, an agent decides to ask
the neighbour whom it evaluates highest: maxb∈Ω eval(a, b, o).

3.2 Ask for Advise
After agent a has decided to ask neighbour b about opponent o, he thus asks agent b for advise. Asking is
recursive, thus when agent b does not have o in his Ω, then he selects his best neighbour to ask for advise
about o. If it is not possible to find an agent that knows the opponent within 6 steps2, then the chain is not
built and agent a uses his default behaviour (here: cooperate).

If a successful chain was built (i.e., o was found within 6 steps), then the trust value is propagated back
to agent a, multiplied by the trust values in the information chain I: Πa∈Itrust(a, bn(a)), where bn(a) is
the best neighbour of a. Consider, for example, that the built chain goes from a via b to agent c who knows
o. Then the propagated trust value received by a is trust(c, o)× trust(b, c)× trust(a, b).

2The number ‘6’ was chosen because of the infamous “six degrees of separation” [8].

100 Nicolas Höning, Tomas Kozelek and Martijn C. Schut



3.3 Process Advise
If agent a has the propagated trust value t, then it can still decide whether to use the received advise or not.
This decision is based on a system-wide chain trust threshold θchain (here: 0.3). If t > θchain, then a uses
the advise; otherwise not (and a uses his default behaviour – cooperate). After that, a’s decision whether
to cooperate or not3 is based on the (also system-wide) threshold θtrust (here: 0.5). If t > θtrust, then a
cooperates; otherwise he defects.

3.4 Play and Aftermath
Playing the game is straightforward: each player makes his move and receives a payoff based according to
a given nIPD payoff table. If an agent has finished a game, three things happen. Firstly, the opponent is
added to the neighbourhood (if he was not in there yet). Secondly, the trust value of the opponent is updated
according to the following rule4:

if (cooperation) then τnew = τold + (1− τold)/2
if (defection) then τnew = τold − (τold)/2,

where τold = 0.5 iff the opponent was not yet a neighbour. Note that these function are both sigmoid curves.
This means that if an opponent changes his behaviour, it will have a quick effect on the trust in him. This
follows recommendations by Axelrod [3] in that successful strategies should quickly retaliate and forgive.
The opponent is then added to Ω with the Kleinberg probability5 1/dist(a, o)α. If the opponent is added and
the neighbourhood size exceeds the allowed K entries, then a random agent is removed from Ω (in order to
keep the size within K).

4 Experimental Evaluation
We present an experimental evaluation of the effectiveness of the AF strategy, in which we compare the
performance of agents employing the AF strategy with colluding agents (who do not reveal true trust values).
As mentioned, all the experiments involve a nIPD scenario, in which agents repeatedly play PD games with
other agents. Each experiment consists of a fixed number of iterations; in each iteration, an opponent is
chosen once for each agent, after which both players remain in the pool. This means that each agent plays
at least one game in each iteration, and probably more (in which case the payoffs within one iteration
are accumulated). Every third iteration, an evolutionary update happens (like in [4]): two random agents
are selected, of which the one with lowest average payoff6 is replaced by a new agent that follows the
strategy of the other agent (removed agents are also removed from all neighbourhoods). In this Section, we
subsequently present 1) the research hypotheses, 2) the strategies of the agents, 3) the experimental design
and setup, and 4) the results and analysis.

4.1 Research Hypotheses
The objectives stated in the introduction translate into the following 3 hypotheses:

• Hypothesis 1: The AF strategy is successful against defection.

• Hypothesis 2: The AF strategy is successful against collusion.

• Hypothesis 3: Colluding agents cannot spread false information over the information chains.

We measure the successfulness of a strategy by means of the proportion of agents that employ that strat-
egy. Additionally, we measure Utilitarian Social Welfare, which is the sum of payoffs all agents achieved in
the current iteration. For hypothesis 3, we look at the information chains and compare the number of built
chains with the number of used chains and the number of only-AF chains (those chains that only contain AF
agents).

3If agent a has opponent o in his own neighbourhood, then he uses this exact same decision procedure (where he knows t himself).
4Note that the only trust value to be updated is thus the opponent’s one, not the trust value of the best neighbour.
5Earlier we explained that based on this probability, it is decided which agents are playing each other. Here, the constant α is

relatively high to support locality.
6This is the total payoff accumulated over its lifetime.

Beating Cheating: Dealing with Collusion in the Non-Iterated Prisoner’s Dilemma 101



4.2 Strategies
We employ some simple strategies to evaluate their interplay. If not mentioned otherwise, all agents can be
asked to build up information chains and report their true trust evaluations about agents they know.

Always Cooperate (AC) – This strategy cooperates in every interaction.

Always Defect (AD) – This strategy always defects the opponent.

Ask First (AF) – This is the strategy that was explained in detail in Section 3.

Simple Collusion (SC) – This strategy behaves like AD, i.e., it always defects. However, when this agent,
say m, is asked for the trust value of a neighbour n, it returns 1 − trust(m,n). The consequence of
this is that SC agents give each other good ratings and cooperating agents bad ratings.

4.3 Design and Setup
We considered three different experiments, between which we varied the initial populations: in experiment
1, the initial population consists 1

2 AD agents and 1
2 AF agents; in experiment 2, it consists of 1

3 AD agents, 1
3

AC agents and 1
3 AF agents; in experiment 3, it consists of 1

2 AF agents and 1
2 SC agents. In all experiments,

there were 20 runs for each experiment; the population size (N ) was 150; the number of iterations was 600
(for exp.2, we also report on an experiment with 3,000 iterations). Regarding the neighbourhoodsize and the
weights, we tested each with two values and use the average of the obtained results for the analysis: we let
K ∈ [0.7 ∗ logN ∗ √logN, 1.1 ∗ logN ∗ √logN ], and ωdistance ∈ [0.3, 0.7].

4.4 Results and Analysis
Figures 1–3 show the results of experiments 1, 2 and 3, respectively. This section reviews our research
hypotheses.

Hypothesis 1 – For experiment 1, this hypothesis holds. We conducted a Welsh Two-Sample T-Test (t =
51.1728, df = 712.562, p-value < 2.2e − 16) to test the difference between the population proportions of
both strategies at iteration 600 (the mean population size of AF was 183.99 and the mean population size of
AD was 28.41). Figure 1(a) shows the strategy proportions over all iterations. It is noteworthy to say that if
a cooperating strategy like AF takes over the population, this is not only self-beneficiary. Figure 1(b) shows
the Utilitarian Social Welfare that is maximised as AF agents take over the population. The high spike in the
beginning results from the initially trusting behaviour of AF agents facing unknown AD agents. Quickly, AF
agents learn not to trust AD agents and spread that information via information chains to other AF agents.

For experiment 2, this hypothesis does not hold: the AF strategy loses from the AD strategy (see Figure
2(a)). We conducted another Welsh Two-Sample T-Test (t = 28.7613, df = 1024.961, p-value < 2.2e −
16), showing that the AD agents significantly outnumber the AF agents (the mean population sizes were
63.47 and 142.78 for AF and AD, respectively). However, Figure 2(b) shows that the AF strategy recovers
once there are no pure cooperators left.

Hypothesis 2 – This hypothesis holds. We conducted a Welsh Two-Sample T-Test (t = 67.04, df = 669, p-
value < 2.2e − 16) to test on the difference of the population representation of both strategies in the end
of runs in experiment 3 (AF, SC). The results show with strong significance that the AF strategy outnumber
the SC strategy after N ∗ 4 iterations (see Figure 3(a)). The mean of AF was 205.26 and the mean of SC
was 19.74.

Hypothesis 3 – To understand the setting of AF agents against SC agents better, we monitored the use of
information chains. In particular, we protocolled the number of chains that were successfully built (i.e. the
original asker, an AF agent, got an answer of someone who had his opponent in his trust table), the number
of information chains that were actually used (i.e. the returning trust information exceeded the chain trust
threshold) and the number of the used chains which only contained AF agents. Figure 3(b) shows that AF
agents will use exclusively use chains that only consists of other AF agents. This may seem strange at first,
but it is a consequence of the design. Defecting agents will seldom be chosen for building the next step in
a chain as they quickly rank low in trust at all AF agents, due to the retaliating nature of the AF strategy. If
they are chosen, they lower the overall returned trust, making it highly unlikely that the asking AF agent will
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use the chain for his decision. In this sense, the AF strategy could be called unforgiving: defecting agents
will not be asked for information7.

5 Conclusions
We proposed and implemented a distributed reputation system, that effectively exploits a small-world social
network. The introduced Ask-First strategy employed by the agents is based on ask-first-act-later: if faced
with an unknown opponent, these agents ask around their social network, and decide on dealing with the
opponent based on the advise received from this network. By means of a series of experiments, we showed
that our strategy can handle malicious agents that do not reveal honest advise when they are asked for.
We tested the strategies in a multi-agent non-Iterated Prisoner Dilemma scenario, but expect that it can be
useful for a number of practical applications, e.g., distributed web service provision or for distributed trust
management in open recommender systems (eBay or Amazon). In future work, we will go more into putting
the strategy into practice.
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Figure 1: AD vs AF in experiment 1, N=150
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Figure 2: AD vs AC vs AF in experiment 2, N=150
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Figure 3: AF vs SC in experiment 3, N=150
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