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”The two offices of memory are collection and distribution; by one, images are accu-
mulated and by the other produced for use.”

Samuel Johnson

”Forget the past – the future will give you plenty to worry about.”

George Allen



Abstract

In the context of information systems, a disruptive environment demands a solution to a
trade-off: How quickly should agents forget experience? If they cherish their memories,
they can build their decisions on larger data sets; if they forget quickly, they can respond
well to change. This task can be characterised as a decentralised learning problem and
its solution highly depends on the environment. In this work, we establish a testbed to
examine this problem by building on a trust network model by Hang et al. [2008].
We run experiments to observe which forgetting patterns work best and what happens if
agents freely choose their rate of forgetting.



4 Contents

Contents

1 Introduction 6

2 Literature 9
2.1 Trust and Reputation . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Trust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Reputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Reputation systems . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.4 Personal trust, role-based trust and collective trust 11

2.2 Certainty-based Trust . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 A brief history . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Belief Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2.1 Evidence Space . . . . . . . . . . . . . . . . . . . . . 16
2.2.2.2 Belief Space . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2.3 The Probability-Certainty Density Function . 17
2.2.2.4 Dealing with Conflict . . . . . . . . . . . . . . . . 18
2.2.2.5 Transferring between Spaces . . . . . . . . . . . . 18

2.3 Referral Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1 Ingredients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 Building Referral Trees . . . . . . . . . . . . . . . . . . . . 23
2.3.3 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.3.1 Concatenation . . . . . . . . . . . . . . . . . . . . . . 23
2.3.3.2 Aggregation . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.3.3 Updating . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.3.4 Selection . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 The value of information over time: A trade-off . . . . . . . . 26
2.4.1 Recency: Exploring dynamic environments . . . . . . . . 26
2.4.2 Certainty: Exploiting stable environments . . . . . . . . 27

3 Objectives 29
3.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Testbed Development . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.2 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Model 32
4.1 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1.1 Information flow . . . . . . . . . . . . . . . . . . . . . . . . . 32

Nicolas Höning
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6 Introduction

1 Introduction

Information becomes less accurate over time as conditions change in a dynamic environ-
ment. More recent information is valued higher - this is a side effect of forgetting, but no
coincidence. It reflects uncertainty in a changing world.

In computer science, trust has become the preferred concept to model the transforming
of experiences into opinions about one another. Referral systems, which define protocols
to disseminate social information in trust reports, are at the core of many multi-agent
systems. While well-designed multi-agent systems are not ”Social Capital” (Putnam
[2000]) by themselves, they are a modern ”Social Technology” (Nelson [2003]), which
might prove very helpful in organising people and communication more efficiently.

However, the notions of certainty and especially forgetting have not gotten a lot of
scientific attention. This is unfortunate, since especially sources of misunderstandings
in communication, for instance between two agents using different views on the past,
deserve our consideration, so that our social interactions actually profit from social tech-
nology. Furthermore, we should be eager to learn about interactions between the micro-
and macrolevel in referral systems. Between building up experience and reacting quickly
to change, every agent makes the local decision how much information of the past to
dismiss. The consequences on the global level have (to the authors best knowledge) not
been subject of systematic research.

In this work, we attempt to establish the exchange of certainty-based trust reports
among autonomous agents as a research design for the study of information networks
and in particular pay attention to the role of discounting (forgetting). As starting point,
this thesis takes a short paper with experiments conducted by Hang et al. [2008], who
created a network simulation for certainty-based trust referrals. It will extend it and
study various parameters for effects on system performance. Then we will examine the
role of discounting more closely: How do different discounting strategies affect system
performance and what, if any, patterns of discounting strategies emerge if agents can
choose their discounting strategy freely?

We build upon previous work by Audun Jøsang and Munindar P. Singh1 to model trust
and its operators mathematically. In particular, we use the model outlined in the PhD
thesis of Yonghong Wang, which incorporates the notion of uncertainty and is tuned to
work well with conflicting information.

In particular, our work proceeds in three phases:

1References to relevant papers will follow in the Literature chapter.
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1. Consolidation We rebuild the experiments from Hang et al. [2008] and consider
extensions to the model, such as discussions of in- and output modelling and the
revision of the update operator.

2. Exploration We implement our disruptions/risk model and then conduct experi-
ments to test for effects of (dis)honesty of agents.

3. Adaptation We add adaptive behaviour to the agents: First, referrers update their
trust in one another and we test for effects of structural parameters and patterns
of discounting strategies. Then, agents get to decide which discounting rate they
should use and we look for emerging effects on system performance.

Tables 1.1, 1.2 and 1.3 list our experiments and their goals 2.

We proceed as follows: Chapter 2 describes relevant work in the domains of trust repre-
sentation, certainty-based trust, referral networks and discounting. Chapter 3 introduces
the objectives of this research and chapter 4 describes the model we use. In chapter 5,
experiments an their results are described. In chapter 6, we conclude and discuss further
research.

Nr Title By Goals

1 Network Trust Approxi-
mation

Hang Measure the ability of the network to estimate
experience in uncertain settings.

2 Damping Referrer Hang Observe memory effects with different discount-
ing factors when an agent changes behaviour.

3 Damping provider, honest
referrer

Hang Observe how trust in a referrer solely depends on
his accuracy, not the kind of information.

Table 1.1: Experiments in Consolidation Phase

2Some more experiments were used as integration tests and can be found in the Appendix.
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8 Introduction

Nr Title By Goals

3b Discounting Alignments Höning Show that it is hurting adaptability if client and
witnesses use different discounting factors.

4a Disruption/Risk-Model I Höning Introduce disruption/risk model and observe the
adaptiveness of different discounting strategies.

4b Disruption/Risk-Model II Höning Observe the system performance (the clients pay-
off) with different discounting strategies under
worsening disruptiveness.

5 Populations with mixed
honesty

Höning Observe system performance with various mixes
of honest/dishonest agents.

Table 1.2: Experiments in Exploration Phase

Nr Title By Goals

6 Adaptive Referrers Höning Give referrers feedback, so they can deal with lo-
cal knowledge only, observe performance.

7 Structure Höning Try different connectivity settings and observe
performance.

8 Discounting Distributions Höning Try different distributions of the same amount of
discounting among the agents and observe per-
formance.

9 Adaptive Discounting Höning Let agents adjust their discounting factor, ob-
serve resulting strategy pattern and performance.

Table 1.3: Experiments in Adaptation Phase

Nicolas Höning



Literature 9

2 Literature

Trust has been a thriving research area in Computer Science for about 15 years and still
is (e.g. Castelfranchi and Falcone [1998], Jonker and Treur [1999], Kham-
batti et al. [2004]). In the following section, we will look at existing definitions of
trust and related concepts.
The two main questions in trust research are how to model trust of one individual in
another individual and how trust networks behave, where we also deal with reputation,
the trust of others in others. While our research focuses on the latter question, both
questions are inseparable as we hope to make clear later on in this chapter. We build
our work on a mathematically sound, certainty-based trust representation for our model,
which will be discussed in section 2.2. Referral networks will also be mentioned, but are
then discussed in detail in section 2.3. We will finally look at techniques to address the
trade-off between recency and certainty in section 2.4, and ground our research interest
in this topic.

2.1 Trust and Reputation

2.1.1 Trust

In this section, we define trust as a prob-
ability measure towards others and repu-
tation as a collective measure. We sketch
the notion of reputation systems. Fi-
nally, we distinct three types of trust:
personal trust, role-based trust and col-
lective trust.

In Computer Science, the term trust is
generally agreed upon to denote a subjec-
tive opinion which an agent holds about
another agent (we will also call the two
agents in a trust relation the trustor and
trustee, respectively). Trust is a basic con-
cept of Artificial Intelligence. To be able
to reason about the world, any individual
must model the agents in it. In its most
simple form, trust is formalised in a bipolar way - a scalar ∈ [0, 1] denoting bad trust,
good trust or any degree in between.
The trust opinion can be about something specific, i.e. the ability of the trustee to pro-
vide a certain service. A trustor could hold several trusts about the same trustee - each
describing his belief about a distinct ability of the trustee. Thus, for computer scientists,
trust is the simplest concept of mind imaginable as it is often represented by a simple
scalar and can be reused in a modular way to model more knowledge about the world.

Discounting experience in referral networks
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We start by considering some definitions of trust and how they introduce notions
deemed important for research on trust. A simple definition is delivered by Demolombe
[2001]:

“We can understand trust as an attitude of an agent who believes that another agent
has a given property.”

Gambetta [1990b] adds that trust is almost never certain, but a measure of proba-
bility. Embedded in this definition is also how trustor and trustee have an asymmetric
dependancy-relation:

“Trust is the subjective probability by which an individual, A, expects that another in-
dividual, B, performs a given action on which its welfare depends.”

Chervany and McKnight [1999] stress the dependancy of trustor to trustee even
more, making it the central part - trust is how much the trustor is willing to depend:

“Trust is the extent to which one party is willing to depend on something or somebody
in a given situation with a feeling of relative security, even though negative consequences
are possible.”

Note how this definition also states how disappointment is always a possibility. It gives
trustors the benefit of relative security, but in the end, to rely on trust entails risk. It is
mostly agreed that a trust relation is greatly defined, even initially enabled, by the risk
involved.

2.1.2 Reputation

When trust systems are discussed, there is often a confusion between trust and reputa-
tion. In contrast to trust, the reputation of an agent is what the system thinks about
him. The Oxford Dictionary defines: “Reputation is what is generally said or believed
about a persons or things character or standing.” Jøsang et al. [2007] write:

“Reputation can be considered as a collective measure of trustworthiness (in the sense
of reliability) based on the referrals or ratings from members in a community.”

Thus, reputation is an abstraction over the trust opinions of many.
Research in biology has focused on reputation mechanisms to explain cooperation. Sig-
mund and Nowak [1998] formalised a process called Image Scoring, where each agent
has a global score which increases when he cooperates and decreases when he defects.
Milinski [2001] use a mechanism called Standing, in which an agent “loses good stand-
ing by failing to help a recipient in good standing, whereas failing to help recipients who
lack good standing does not damage the standing of a potential donor”.

Nicolas Höning
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2.1.3 Reputation systems

Sociologists, Economists and computer scientists share their main interest in reputation
as a protocol in social systems, e.g. like in eBay. In these systems, agents can share trust
reports with each other, in order to disseminate valuable information.
For instance, Resnick et al. [2006] conducted experiments to assess the economic
value of reputation for a power-seller on eBay. Misztal [1996] discusses trust in social
systems as a means of social cohesion. Her main three observations are that trust makes
social life predictable, creates a sense of community, and it makes it easier for agents
to cooperate. The first and third of these observations immediately appeal to computer
scientists as they strive to model social contexts in a way that is useful for both humans
and the machines they employ. For instance, consider the computer science research by
Faehnrich and Nimis [2004], whose main observations are that reputation systems
give orientation to newcomers, protect against collusion and disseminate information.
In contrast to many reputation scores (e.g. Image Scoring or Standing), the reputation
any agent derives from the network are his local view and not global to the whole system.

Singh and Yolum [2003] established the term referral network for a social system
that uses trust as a protocol and trust reports as a commodity to share among agents.
In these systems, agents build referral paths, connecting them to to the target agent
vie referrals. From such a paths, agents extract a reputation score. We note that this
score resembles the combined trust opinion of the agents local view on the network and
is not global. Furthermore, it is of interest to note how direct experience (trust) becomes
indirect knowledge (reputation) when it is shared. In fact, each agent updates his own
trust with the opinions referred to him by others and thus his opinion becomes a mix of
trust and reputation. This is the reason that trust and reputation are not only hard to
distinguish, they are inseparable.

By simulating these systems, their dynamics can be made visible and discussed. What
resembles the social networks of humans best? What is efficient in terms of computation
and fairness? To be more specific, how should agents integrate trust reports from different
sources? How should they update their own reports when new information arrives? These
questions can be discussed by formalising operators in a trust domain. In section 2.3
we will look at a specific set of them and also discuss referral networks in more detail.
Lately, also security in trust networks has moved into the focus of reseach, e.g. in Kerr
and Cohen [2009]. The strategies this thesis uses are rather simplistic, as we focus on
the system behaviour (we explain the model in chapter 4).

2.1.4 Personal trust, role-based trust and collective trust

Originally, the concept of trust is inspired by observing human interactions. Sociologists
have argued about the types of trust that are actually employed in society (e.g. Gam-
betta [1990a]). Most scholars describe two notions of trust (though they use different
terms for them) - one fits best for personal relations and the other for non-personal rela-
tions. We now discuss this distinction as it clarifies the context of our work.

Discounting experience in referral networks
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Luhmann [2000] differentiates between trust and confidence. In his view, trust is used
when an agent is personally engaged in a familiar one-to-one relation, while confidence is
the attitude an agent develops towards the social system he reacts with.The trustor may
interact with a single agent, but to him this agent represents the trustee, the organisa-
tion. For instance, to visit a doctor requires confidence in the medical system. When this
doctor has become your personal doctor which you visited several times, you approach
him with trust.
In the same way, Johansen [2007] uses the terms personal trust and role-based trust,
respectively. Johansen also uses the term depersonalised trust for role-based trust, which
maybe decribes it best.
For our purposes, this distinction is especially helpful when considering which contexts
computer science is actually most interested in. Those are modern, electronically inter-
connected social systems in which participants often engage with each other for the first
time or in an unfamiliar context. Considering the informational progression of our social
systems, Luhmann writes:

“These new conditions, of access and temporal pressure, of opportunity and depen-
dence, of openness and lack of integration, change the relation between confidence and
trust. Trust remains vital in interpersonal relations, but participation in functional sys-
tems like the economy or politics is no longer a matter of personal relations. It requires
confidence, but not trust.”

We agree with Luhmann in this point. Trust, as understood as a complex and very
personal matter of involvement, is not what is modeled in contemporary trust research in
computer science (or artificial intelligence, for that matter). Mostly, these trust systems
model Luhmanns confidence or Johansens role-based trust, especially since in most of
them, trust is enriched with reputation, a collective view on trustworthiness. Simply put:
When ones trust opinion is influenced by the opinion of others, it becomes less personal.
Yet, depersonalised trust is the state of the art in trust research - a sophisticated one-to-
one relation between two machines or two programmes has yet to be build.
It is not implied here that artificial intelligence is not interested in modeling personal
trust more detailed in the future. This will be worked on in a short future, but we need
to learn more about the mechanisms behind it from new advances in (Neuro-)psychology
(e.g. the role of the hormone Oxytocin in trust, in Kosfeld et al. [2005]) or other
disciplines.
Luhmann uses a further criterion to distinguish trust from confidence. In both situations,
the trustor faces the possibility of disappointment. According to Luhmann, confidence
entails danger, which is independent from ones action and hard to predict (e.g. the gen-
eral danger of being badly informed in a censorship society). Trust, on the other hand,
involves risk, which is highly dependant on the trustors further action and often higher
than the danger which comes with the confidence relation (e.g. the risk of exchanging
regime-critical letters in a said society). In Luhmanns view, the distinction between dan-
ger and risk is an ability that societies can evolve:

Nicolas Höning
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“Whereas in the Bible, for instance, the Last Judgement comes as a surprise, the late
Middle Ages began - under the influence of the confessional - to represent it as the pre-
dicted outcome of risky behaviour. In committing sins you risk the salvation of your soul,
which thereby becomes a matter not of church practice but of individual lifestyle and ef-
fort.”

Luhmann further explains how confidence and trust enable each other in the light of
the danger/risk distinction. High-risk engagements come about in societies in whose sub-
systems the citizens have high confidence. For example, the more confidence you have in
the law system, the more you may feel able to risk an up-front investment in a personal
business relation 1.
The point of these considerations is that the confidence-building social systems which
are currently in the focus of computer science research (and also of this thesis) are much
needed buildings block for our society in that they help humans to stay connected, in-
formed and confident. As has been mentioned before, these social systems are what
Nelson [2003] calls ”Social Technologies”. Following Luhmann, they are a crucial in-
gredient for an effective society in which personal trust blooms.

However, the distinction between personal and role-based trust (or trust and confi-
dence) does not describe fully the interconnected settings of referral networks. We noted
before how role-based trust models the trustee as a (depersonalised) group or system. In
contrast, a referral system models the trustor as a group (see Figure 2.1 for illustration).
Essentially, the trustor makes use of a hive mind when he collects the reputation score.
We think it is accurate to speak of collective trust (Nowostawski and Foukia [2007]
also use this term), when a network opinion made from several trust values is produced.
Collective trust closely resembles reputation, but captures the notion how, given time
and connectedness of the trustee, collective trust values might differ substantially. Also,
personal experiences might very well be mixed in.

2.2 Certainty-based Trust

In this section, we introduce the
certainty-based trust representation we
use for our model. We explain its inten-
tion and research history. We will then
formulate how belief models in this rep-
resentation work in detail.

Trust is based on experience. The more
experience a trustor collects about the
trustee, the more accurate his opinion (his
trust report) should become. For this, ev-
ery trust representation needs to be ac-
companied with an update function, so
that new experience somehow alters the
existing opinion.
A trust report is thus nothing more than a compressed history of experience. When
agents translate their experience history into their trust reports, they compress it and

1Luhmann also sees an influence of trust on confidence and border cases where confidence blends into
trust or vice versa, but these details are out of the scope of this section
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Figure 2.1: A simple comparison of trust types

thereby lose information. It may be worthwhile to take a step back and see what should
not be thrown away.
Many trust models (e.g. Jonker and Treur [1999]) model trust as a simple scalar
∈ [0, 1] or ∈ [−1, 1](where 1 denotes full trust). In his development of subjective logic,
Jøsang [1999] argues that such a simple representation ignores one important dimen-
sion: On how much experience is the report built? How often has it been updated with
new experience? In other words, how certain can you be about your opinion? It is prefer-
able to rely on a trust opinion which has been updated through experience 30 times than
on one which has only been updated 3 times. A trust representation which incorporates
this knowledge discounts the belief in a good outcome by the uncertainty that comes with
sparseness of experience.
To this end, Jøsang (e.g. Jøsang [1999], Jøsang et al. [2006]) combines baysian
modeling with belief theory. He updates trust by statistical updates to a PDF (Proba-
bility Density Function) in the light of new, binary (good or bad) experience. The more
important step is that he employs belief theory, in which the sum of all probabilities does
not necessarily add up to one. The missing difference denotes the uncertainty, and it
should become smaller by accumulating more experience.
Instead of representing trust with a simple scalar between 0 and 1 (e.g. 0.7 would denote
a belief that a positive experience is expected with the probability of 0.7), which divides
the possibility space in two, a three-fold belief space is modeled. The third fold takes
uncertainty into account - initially, with no experience, everything is uncertain. As expe-
rience is learned, belief and/or disbelief start to get their share. This helps to distinguish
on how much experience a trust report is actually based. See Figure 2.2 for an illustration.

A more complex representation will of course also open new questions. For instance,
how to translate actual experience, the evidence space, into this belief space? How should

Nicolas Höning
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Figure 2.2: Scalar trust vs certainty-based trust with uncertainty (u). The ratio of belief
(b) and disbelief (d) is equal in both charts.

two of such trust reports be combined? What should the certainty be when an agent ac-
cumulated a lot of experience, but it is not very conclusive (similar amounts of positive
and negative experiences)?

We will now quickly summarise the recent history of this research path and then go
into details concerning the existing work in certainty-based trust. While Jøsangs work
was influential, the researcher group around Singh (e.g. Yu et al. [2004], Wang
and Singh [2006]) has developed this concept further and answered many practical
questions. Therefore, the presented model will follow closely to Wangs doctoral thesis
(Wang [2009]).

2.2.1 A brief history

As has been noted above, Jøsang [1999] establishes the certainty-based trust models we
introduce in this chapter. In particular, he describes two trust representation spaces: an
evidence space, which simply holds good and bad experience counts, and a belief space,
which also incorporates uncertainty. He proposes how to translate between these two
spaces and introduced two operators with which trust reports could be combined in place
or along referral paths: consensus and conjunction, respectively.

Wang and Singh [2007] then attempt to formally ground Jøsangs trust notion to
make it handle more situations correctly. They adjust evidence transformation such that

1. that Laplace’s rule of succession holds

2. the certainty decreases as conflict increases, provided the amount of evidence is
unchanged

To this end, they also introduce a new bijection between evidence and trust space.
Later, Wang and Singh [2006] define two operators for their slightly different represen-
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tation: concatenation (refining Jøsangs conjunction operator) and aggregation (refining
Jøsangs consensus operator). We will go into details about operators in section 2.3.3.
Hang et al. [2008] put this framework to the test in a trust network simulation. They
present a simplistic testbed with agents that change behaviour, leading to conflict in the
data, in order to demonstrate how their model can handle such situations. We use their
model as a starting point for our own in chapter 4. They also develop an update operator
to update the trust in agents based on the accuracy of their referrals.
Finally, Hang et al. [2009] test their algorithms among several others on two social
data sets. They add a selection operator in order to avoid double-counting of information
and use the Weber-Fechner law to adjust subjectivity in test data sets while transforming
them into evidence space

2.2.2 Belief Models

2.2.2.1 Evidence Space

To keep things simple, trust is modeled in a binary world of good or bad experiences. An
agent counts his positive and negative experiences r and s, respectively. This forms the
database of his experience 〈r, s〉 .
Normally, an agent would increment r by 1 if his experience is positive, and s by 1 in the
opposite case. Fuzzy representations of experience are possible: The experience database
is allowed to contain real numbers. This makes flexible discounting mechanisms possible.
We introduce here the discounting parameter β ∈ [0, 1]. When updating the evidence
with new information r′ and s′, all previous information r and s can be discounted by β:

r = r′ + (1− β) ∗ r

s = s′ + (1− β) ∗ s

Intuitively, β = 1 forgets all old information and β = 0 forgets nothing 2.
The probability of a good outcome α is denoted with r

r+s
3. If r = s = 0, α is set to 0.5.

4.

2.2.2.2 Belief Space

Jøsang [1999] developed a so-called ”belief space”, where the agent now denotes belief
(in a good experience) as b ≥ 0, disbelief as d ≥ 0 and the remaining uncertainty as
u ≥ 0. Adding up b, d and u yields 1 and the certainty then is 1− u or b + d. To reach
the belief space 〈b, d, u〉 from the evidence space 〈r, s〉, we first compute the certainty.

2The issue of discounting is of central importance for this research and will be revisited later.
3More precisely, α is the point at which the probability function is maximised, which we detail below.
4Often (but not here), Laplacian Smoothing is used, where both sides of the fraction have default

additions. Then, α would be r+1
r+s+2
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2.2.2.3 The Probability-Certainty Density Function

Probability of binary events can be modeled by a probability density function (PDF).
Figure 2.3 shows a typical example (after collecting 1 negative and 8 positive experi-
ences). When nothing is known, the curve will resemble a uniform distribution over all
probabilities p. The probability which is most likely is p = α, so the PDF reaches its
maximum at this point. So in the normally distributed case, when nothing is known, α
is 0.5. The more the data suggests a certain α as likely outcome, the sharper the curve
will become.
This models an a posteriori trust distribution. When qualities are described by a dis-
tribution rather than a single number, this means that evaluations can be made on the
basis of the perceived mean and variance of a reputation rather than an absolute number.

Figure 2.3: A probability Density Function, from Jøsang et al. [2007]

Wang and Singh formulate a domain-specific probability-certainty density function
(PCDF). The certainty (given r and s) then is

certainty(r, s) =
1

2

∫ 1

0

| pr(1− p)s∫ 1

0
pr(1− p)sdp

− 1|dp

Wang and Singh arrive at this formula in several steps, but the intuition behind it is
that the certainty is higher for bigger deviations of the PCDFs integral from a normal
distribution.
To this end, they compute the conditional binomial f(p|〈r, s〉) (Casella and Berger
[1990], p. 298) for any p in order to accumulate all mean absolute deviations from the
mean value of the integral over any PDF (which is 1)5. Every increase in the PCDF for
p is a reduction in another PCDF for p′, so they remove double counting by multiplying

5For practical purposes, they discretise over n intervals between 0 and 1 for the integrals over p, e.g.
n = 1000
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by 1
2
.

2.2.2.4 Dealing with Conflict

Contrary to the belief representation defined by Jøsang, Wang and Singhs representa-
tion paid attention to conflict in the data. They denote conflict in the experience with
min(α, 1−α). Their intuition is that certainty usually increases when the amount of data
increases. But we should also care for the amount of conflict in that data. If α = 0.5, we
can’t be as certain as when α = 0.9. The discussion of the probability-certainty density
function above indicates that the deviations in a conflict-rich experience lead to lower
certainty.
More formally, Wang and Singh point out two properties of their model: When the
amount of experience increases with fixed α (e.g. from evidence 〈2, 8〉 to 〈20, 80〉), the
certainty also increases. When the amount of data stays the same, but the conflict in the
data increases (e.g. from evidence 〈2, 8〉 to 〈5, 5〉), the certainty decreases.

2.2.2.5 Transferring between Spaces

The way in which the belief space is computed from the evidence space is crucial, as
becomes evident by the discussion above. It is also desirable to provide a bijection
between both spaces.

From Evidence to Belief With the certainty calculated from the evidence, we can com-
pute all parts of the belief space. The belief is certainty∗α and the disbelief is certainty∗
(1 − α). Basically, the certainty is divided into belief and disbelief according to α. By
doing this, we discount the evidence by the certainty. The uncertainty then simply is
1− certainty.

From Belief to Evidence Wang and Singh [2007] provide a projection from belief
space to evidence space 6. Basically, the amount of evidence t = r + s is estimated from
〈b, d, u〉 until certainty(r, s) is close enough to b+ d. Since we know α = r

r+s
= b

b+d
7, we

can compute the evidence for each t as 〈t ∗ α, t ∗ (1− α)〉.

6Jøsang [1999] also provided one for his trust representation
7 b
d represents the same ratio as r

s as they both represent α
1−α
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2.3 Referral Networks

In this section, we describe the notion of
referral networks. We list ingredients of
such systems, explain how referral trees
are built and explain the operators be-
ing used to aggregate, concatenate and
update trust reports.

When agents make use of the trust re-
ports provided by other agents, they form
a referral network. A referral network is
an information dissemination system con-
sisting of autonomous and possibly self-
interested agents. Trust reports are the
protocol of choice among such agents and
as we have seen in the previous section,
there are many ways in which this protocol can be realised and what it actually talks
about.
A referral is provided by agent B to agent A by giving A a report about his trust in C (see
Figure 2.4). The path from A to B to C is called a referral path (and could it principle
also extend over several other agents).

Figure 2.4: A simple Referral Network

The main task of a referral network is to disseminate information encountered in direct
experience, which thus becomes indirect knowledge to its recipients. Relating to our dis-
cussion in section 2.1, trust (direct experience) becomes reputation (indirect knowledge).
However, this reputation is not of a global nature, but a local view, dependent on the
information sources each agent has. An effect of this creation of reputation in complex
social systems is often the emergence of cooperation through indirect reprocity. Nowak
and Sigmund [2005] put it like this:

“Presumably, I will not get my back scratched if it becomes known that I never scratch
anybody elses. Indirect reciprocity, in this view, is based on reputation.”

Referral networks have been studied widely (e.g. Singh and Yolum [2003], Ding
et al. [2005]). In this section, we will describe briefly the ingredients usually required
for a referral network and in particular describe the operators with which agents combine
trust reports along referral paths. Here, we will in particular refer to work done by
Jøsang et al. [2007] and Wang [2009].

Discounting experience in referral networks
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2.3.1 Ingredients

Adaptability The key advantage of a referral network is its adaptability to reflect chang-
ing circumstances in the environment (where other agents are also counted within the
environment). By learning from other agents what they experienced, each agent increases
his sensual radius. Furthermore, each agent can adapt on its own. If an agent knows
more than one peer, it can decide which agent to contact and thus gains flexibility.

Autonomy From the previous point follows that agents should be able to act autonomously
in their own regard. They are able to refuse service or provide bad service intentionally.
Other agents should not rely on cooperation. This models undetermined and dynamic
environments and enables agents to react quickly to perceived changes.

Weighting A referral can in principle be provided without any personal opinion in the
trustworthiness about the referee. Then, a referral is nothing but a connection. However,
from the principle of autonomy follows that trust is necessary to rate the suitability of
a referral. If each referral is provided with a trust report attached, we can regard the
referral network as a weighted graph.

Trust semantics Note that different trust semantics are involved in the above example.
While the trust which B has in C talks about the service quality C can provide, the
trust A has in B talks about the quality of information that B provides. Yu and Singh
[2002] call these two notions expertise (quality of service) and sociability (quality of
information). When combining trust reports along a path, caution should be taken to
this distinction.

Agent Roles Agents can take on different roles in a referral network. When an agent
asks the network for an opinion, we call him a client. The client in the introductory
example would be agent A. The agent being asked about is called the service provider,
which in the example would be C. If an agent responds to a request with the opinion
based on his own experience, he acts as a witness. In the example, B is a witness. When
an agent doesn’t have an opinion about the service provider (or would rather not give
it), he can merely refer to another agent. In that case he acts as a referrer. Note that
the example has no agent in this role. Figure 2.5 shows an extended example, in which
agent B acts as a referrer to D, who in turn acts as a witness now.

While it is natural to assume that each agent can play all roles in a given system, it
can make sense for a research setting to allow agents to play only one role (which is what
Hang et al. [2008] and this research do). This way, we avoid any interdependencies
from the different roles (see also the discussion on complexity and interdependencies
below).

Protocol In essence, any kind of agent can be part of a referral network. What matters
is the protocol the agents use to refer to each other. Thus, the protocol is defined by
the representation used for trust. A certainty-based trust report like we use here is not
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Figure 2.5: A simple Referral Network with four agents

compatible with a simple scalar trust report. Interestingly, this incompatibility is one of
the main reasons why Hang et al have not tried to design an agent for the ART trust
competition (Fullam et al. [2005]).

Purpose The general design purpose of a referral network is to enable an agent to
receive an estimate about some service from the network. The service in question could
be anything from providing a valid response to be truthful about its identity. It could be
another agent in the network or an external entity. The specific incentive for an agent
to use trust reports from the network (for instance, to make less errors or receive more
payoff) has no impact on this general idea.
A referral network design should provide good estimates and in particular be resilient
against fluctuations in service quality and malicious behaviour of other referrers.

Message Routing When we say that an agent speaks to ”the” network, we could more
fittingly speak of ”his” network. Since in most networks not every agent is connected
to every other one, each agent has a unique standpoint in the networks structure and
his local view is distinct to that of every other agent. The structure of networks thus
has a significant effect on the quality of referrals. A very popular network structure is
the Small-World network (Watts and Strogatz [1998]), which resembles the social
structure found in most human and many biological systems.
Another design aspect concerning structure is how agents should refer along a path. One
approach (e.g. Höning et al. [2008]) is to let agents refer recursively. Look again at
Figure 2.5. Here, agent A asks B about C, which in turn asks D about C. The trust
report is then propagated back to the beginning of the path (and maybe modified each
time), so D gives his report to B, which gives a report back to A. In contrast, the iterative
approach lets agent A be involved in every step, so A asks B, who gives him a trust report
referring to D. Then A asks D, who gives him his trust report about C. One advantage
of the iterative approach is that agent A has complete control over each step. He can
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decide if the path is worth pursuing and he can update its own trust in the referrers after
he evaluates how fitting their reports were. Also, referrers will operate in a much simpler
and well-defined context. They only know the source and the target of the path which
makes modeling them much easier.
The figure below illustrates the message routing in both approaches for the simple network
from Figure 2.4.

(a) recursive approach (b) iterative approach

Figure 2.6: Message routing in referral network designs

Node Routing Each referrer has the choice to route his referral to any of his acquain-
tances. He might choose the one he trusts the most. He might prefer to refer to witnesses
over referrers, even if he trusts the latter more. He might also choose to provide more
than one referral.
As we discuss these issues, we move into the strategy space - especially if referrers have
their own incentives in providing good or bad referrals 8.

Complexity Work on referral networks (and this research is no exception) has to face
the complexity that comes with the interdependence of its components. When subjective
information (trust) turns into objective information (reputation), it becomes harder to
tell where information came from or even when it was created. Some think that systems
should be limited in their ability to build referral chains. For instance, Jøsang et al.
[2007] write:

“In order to avoid dependence and loops it is required that referrals be based on first
hand experience only, and not on other referrals.”

However, even they continue with noting working examples, for instance Googles
PageRank algorithm (Page et al. [1998]), which normalises over referrals of each agent
9. In essence, every model will use some restrictions to tackle the complexity, in order
for the researchers to understand it. Which ones to restrict may be open for debate. It
might be interesting to study how humans do it. How far can reputation travel among

8This topic is therefore not addressed in this research. All referrers will simply give one referral to a
random neighbour, preferring witnesses over other referrers.

9It could also be argued that introducing uncertainty is a way of normalising, but this is done internally
by each agent.
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humans? How long does it survive? Of course, the complexity of human social systems
makes it hard to give definitive answers to these questions, so we might end up on square
one.

2.3.2 Building Referral Trees

When a client asks referrers for an opinion about a service provider, he starts building a
so-called referral tree. Each referrer may refer to one or more witnesses or even to other
referrers, which brings about a branched structure of referrals. Each referral is annotated
with a trust value - the meaning of which depends on the role of the referred agent: it
might mean how trustworthy the information from the next agent on that branch is or
how likely he is to provide good service.
Via iterative routing, the client asks each current leaf on the tree to provide new referrals
10 and adds them as new leafs on that path, unless the referral comes from a witness and
thus refers to the service provider.
Once all branches have service providers as leaves, all trust values get combined as the goal
of building such a referral tree is usually to end up with one trust value which represents
the opinion of the clients network. To this end, trust values have to be concatenated
along the paths and aggregated at each branch. We need to define operators for this
which the next section has more details on.

2.3.3 Operators

In any referral network, combining trust reports from multiple sources is important, but
non-trivial. An agent needs to do this when he builds a referral tree or when he updates
trust values based on feedback. To design these operators is one of the main tasks when
planning a referral network. We will here formalise the operators used in a certainty-
based trust representation (see section 2.2).
The two most basic operators, aggregation and concatenation, had already been proposed
by Jøsang et al. [2007]. Wang and Singh [2007] only adjusted concatenation and
also, in later papers, proposed two new operators, update (Hang et al. [2008]) and
selection (Hang et al. [2009]). Below, the operators as developed in Wangs, Hangs
and Singhs work are explained.

2.3.3.1 Concatenation

Along the same path, trust is propagated using the concatenation operator. Let x.belief
denote the belief computed on trust x. Trust a = 〈ra, sa〉 concatenates with trust b =
〈rb, sb〉 to

〈a.belief ∗ rb, a.belief ∗ sb〉

Intuitively, the experience on trust b gets discounted by the belief trust a puts in trust
b. So the witness information from the end of a path travels to the beginning, being

10In this work, agents will only give one referral.
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Figure 2.7: Ilustration of concatenation along paths and aggregation of the results

discounted along the way. The concatenation operator is proven to be associative and
commutative.
It is important to notice that referrers have a limited role by use of this concatenation
operator. Every referral path only provides the original trust report of the witness at its
end, discounted by the referrers beliefs. The referrers can not change the probability α
given by the witness, because α is based on the ratio of r to s and with every concatenation
r and s both get discounted by the same amount: the belief of the referrer11.
The function of a referrer, then, is twofold: First, he has to choose which witness or
other referrer to refer to. Second, he should estimate if the reports he gets are likely to
be truthful or not and place his referral trust accordingly 12. In an extreme case, where
only the false reports of defecting witnesses are available, the referrers can do nothing
but soften the impact of this situation by adjusting his referral trust.

2.3.3.2 Aggregation

Aggregation happens when different paths between the same target and source get merged.
Trust a = 〈ra, sa〉 aggregates with trust b = 〈rb, sb〉 to

〈ra + rb, sa + sb〉

Intuitively, this simply adds up both experiences in evidence space. The aggregation
operator is proven to be associative and commutative.

11However, if one of r or s is zero and the other is not, then only one of the two actually gets discounted.
Note that this does not affect the ratio, since if one of r or s is zero, the ratio is undefined anyway.

12We will revisit this two regards of a referrers ability when we reconsider the update operator in chapter
4.
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2.3.3.3 Updating

With the update operator, an agent updates his trust in a referrer based on the usefulness
of the information his referral provided. For instance, the client computes the ratio
between the trust he now has in the service provider (after the service provision) and
what the referrals given by the referrer provided as opinion. By definition, this takes
place ex post, after the client got the service. See Figure 2.8 for illustration.
Let td be the clients direct experience and tr be the concatenated trust from the path
which the referrer provided. Also, given any trust x, x.α, x.r and x.s denote the α, r and
s of trust x, respectively. The accuracy q is computed as

tr.αtd.r ∗ (1− tr.α)td.s

td.αtd.r ∗ (1− td.α)td.s

The formalisation of this accuracy ratio q is developed from the probability-certainty
density function, which was explained above. Note that q is computed in evidence space
only, so the certainty is not important for q.
The client can now update his trust in the referrer tref :

tref.r = tr.certainty ∗ q + (1− β) ∗ tref.r

tref.s = tr.certainty ∗ (1− q) + (1− β) ∗ tref.s

Note that we use the discounting parameter β, since the update operator is time-oriented
by definition. Wang [2009] also suggests some other variants of this operator to better
accomodate against malicious referrers, very steep PCDFs and uncertainty.

Figure 2.8: Illustration of the update process

2.3.3.4 Selection

In passing, we discuss an operator from more recent work in Hang et al. [2009]. They
introduce a selection operator to tackle double counting of information. To a client who
asked two referrers, it may seem that he aggregates information from two paths while
really the two referrers may in turn have returned information from the same witness.
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This would lead to double-counting of the information the witness gave.
Performing a selection among paths means that the client compares two paths and dis-
cards the one that is less reliable (in terms of concatenated beliefs). The selection operator
is proven to be associative. While it worked well, an empirical study on real datasets
could not prove that their selection operator performs significantly better that a simple
model.

2.4 The value of information over time: A trade-off

In this section, we consider how the con-
cepts of certainty and recency develop
with the lifetime of a system. We look
at techniques used to realise discounting
and dynamics that occur in systems in
which agents try to maximise both con-
cepts.

We discussed how a trust system could
model uncertainty in section 2.2. If we
imagine agents that accumulate informa-
tion over time, than certainty would in-
crease steadily over time. However, while
time passes, things in the environment may
change. This thought introduces the con-
cept of recency. Information can be recent
or old. If we assume that changes happen
for a reason and that changes develop continually, then clearly more recent information
is more valuable. Both certainty and recency are goals when dealing with information,
but they are mot complementary - it is a complex task for a decentralised system to find
the right trade-off for each situation.

2.4.1 Recency: Exploring dynamic environments

The most basic approach to incorporate recency in ones memory is that old experience
should be accounted for less, since things might change over time. Discounting mostly
happens with a discounting factor like the one we introduced in section 2.2. For in-
stance, here is the formula used by Jonker and Treur [1999] for a simple scalar trust
representation:

gd(tv, ev) = d ∗ tv + (1− d) ∗ ev

where gd is the update function which updates the trust value tv ∈ [−1, 1] in light of
a new experience ev ∈ [−1, 1], using a discount factor d ∈ [0, 1]. The existing tv is also
discounted to normalise the result of gd in the range [−1, 1]. This is similar to our model,
only that we update positive and negative experience separately and our discounting fac-
tor is called β.
The choice of the discounting factor is crucial and should depend on the situation. Hang
et al. [2008] experimented with varying discounting factors in different situations (as
we will further explain in chapter 4), but we have not come across any research in which
agents choose their discounting factor themselves.
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The strive for recency has also been encountered in Psychology. For instance, it is
known as the ”recency effect” (e.g. Baddeley and Hitch [1993]) that the most recent
memories have an even stronger recall than linear discounting would predict.
Throughout the computer science literature, authors use different names. Instead of a
”discounting factor”, they might speak of a ”forgetting factor” (e.g. Jøsang and Ismail
[2002]), ”aging factor” (e.g. Buchegger and Le Boudec [2003]) or ”fading factor”
(e.g. Buchegger and Le Boudec [2004]).

There are other techniques than to discount all history. For instance, in Keung and
Griffiths [2008] and Huberman and Wu [2003] , agents update their trust in others
while keeping a ”history window” of previous interactions, the size of which is a controlled
parameter.
Furthermore, discounting can happen not within each agent but at a more central loca-
tion, for instance by the agent who receives the trust reports, like in Jøsang et al.
[2006]. The latter lets all data be stored forever, since discounting only happens when
needed, but has the disadvantage that the age for each rating needs to be known, opening
the door for deception.

2.4.2 Certainty: Exploiting stable environments

Agents generally strive for more information in order to learn about their environment.
When they are more certain in their actions, they can take higher risks and maximise
their profits. The trust model described in section 2.2 builds up certainty over time, as
agents interact.
However, when stored experience gets forgotten, the certainty also decreases. As agents
in a trust system try to maximize both of these values, a trade-off situation occurs: How
much should old experience be discounted in order to to benefit from both certainty and
recency?

Several researchers have noticed this issue (while none that we know of have fo-
cused their analysis on it). For instance, Keung and Griffiths [2008] note the re-
cency/certainty trade-off when agents produce less failures with smaller history windows,
but become more vulnerable to malicious behaviour which exploits small history win-
dows. In Huberman and Wu [2003] a simple reputation system is modeled, in which
two firms and many customers were present. Customers discount their memories of direct
experience and firms choose how to invest in their next intended quality level, based on
their current reputation. They show that discounting is a necessary condition for equilib-
rium points to be reached but that uncertainty makes it unlikely that the system reaches
any equilibrium point.
Huberman and Wu [2003] also note how time delays in the turnover from observation
to action destabilises their system, which can be understood as an argument for a recency
effect in customers.

To accumulate certainty is generally rewarding, unless the environment becomes too
uncertain for accumulated memory to yield any valuable predictions. In that case, a focus
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on certainty can even be harmful as the agent(s) will be too slow to react to a disruption.
Harrington Jr [1998] shed light on the welfare of a system in unstable conditions.
They model a social system as a tournament system in which agents stay as long as
they are more successful than a random opponent up to a maximal number of rounds
(this is intended as a metaphor for hierarchies with promotions). Each round, one of two
strategies can be used. They employ two types of agents: rigid and flexible. Rigid agents
always apply strategy A or B throughout their lifetime, while flexible agents always de-
cide between one of them, after evaluating the circumstances. Agents are rewarded for
playing the strategy most fitting to the situation, but it is also assumed that agents who
played one strategy constantly become better at it and yield higher outcomes (which is
an analogy for our concept of certainty).
Not surprisingly then, the environment decides which agent type is favoured. Stable
environments favour the experience of rigid agents. The more disruptions in the circum-
stances trigger it to change its preference for strategy A or B, the better flexible agents
fare. When a punctuated-equilibrium pattern of stable times and sudden changes is mod-
eled, the flexible agents succeed only in times of disruption. As soon as stability is back,
rigid agents rule again (though the individual agents of course might have been replaced).
Harrington concludes by observing that the long-term success of any organisation could
be predicted by the ratio of flexible agents the system manages to keep around in spite
of stable times. If flexible agents become extinct, a disruption is much more harmful for
the overall system performance.
In this case, we do not need to speak of recency versus certainty. To some degree, a
system should manage to have both.

In this literature overview, we have covered a lot of ground. After discussing trust and
reputation as conceptual basis for our work, we formally introduced certainty-based trust
and how it can be used in referral networks13. We work with this trust representation
and the accompanying set of network operators in our model, which we explain further in
chapter 4. Lastly, we introduced the notions of memory discounting (forgetting) and how
discounting leads to a trade-off task when certainty is assumed as a goal. The research
objectives, which are topic of the next chapter, are mainly interested in this task.

13In which we closely followed work by Singh and colleagues.
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3 Objectives

In this chapter, we describe the objec-
tives of this work. We state how cer-
tainty and recency are important param-
eters for the analysis of next-generation
multiagent systems. We lay out our re-
search questions concerning the effects of
individual discounting strategies on sys-
tem performance.

This work models a referral system in
which agents handle certainty-based trust
and takes a closer look at the dynamics
of individual discounting strategies in dis-
ruptive environments. Here, we want to
lay out the reasons why this is beneficial
for the understanding of information sys-
tems. We describe our work in terms of
testbed development and exploring the ef-
fect of parameter settings. Furthermore,
we will state our research objectives in terms
of research questions and hypotheses. We are interested in the relation between uncer-
tainty in the environment and discounting strategies as well as self-organising patterns
of discounting.

3.1 Applications

The previous section laid out how any information system should over time strive to
build up certainty, but at the same time still be able to react dynamically. In a system
consisting of autonomous agents, each agent can decide how he handles this trade-off, i.e.
how much information he should discount in order to maximise his utility.
Interestingly, this problem has a local and a global perspective, since these local decisions
will in some way influence the system utility as a whole. In our view, this is a design
problem which has not been addressed so far, at least not in the context of referral sys-
tems.

In which research contexts is the addressed design problem of interest? According to
Jøsang et al. [2007], the purposes of research in trust and reputation systems should
be to:

a. “Find adequate online substitutes for the traditional cues to trust and reputation
that we are used to in the physical world, and identify new information elements (...)
which are suitable for deriving measures of trust and reputation.”

b. “Take advantage of IT and the Internet to create efficient systems for collecting
that information, and for deriving measures of trust and reputation, in order to support
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decision making and to improve the quality of online markets.”

In modern multi-agent systems, agents are increasingly designed to be autonomous and
highly dependent on one another at the same time. This holds for still rather abstract
ideas like trading agent systems (Arunachalam and Sadeh [2005]), which are still
highly researched. It is, on the other hand, already a valid concern for systems who are
closer to the light of day like Peer-To-Peer systems, in which trust is earned through
providing upload bandwidth in local interactions, wireless sensor networks (Guangjie
et al. [2007]), in which sensors communicate decentrally and every sensor should try
to route information most efficiently, or web services (Maximilien and Singh [2004]),
who use each other to fulfil service requests.
Clearly, agents in all of those systems will use some sort of trust to enable their decision-
making and will have to deal with the fact that conditions (i.e. their counterparts) are
subject to change. These are really the only two preconditions for this design problem to
arise.
As agents are autonomous, the tools which a system designer can use are limited, but
the protocol of communication among the agents (which, in a referral network, is defined
by trust reports) is an important factor. We hope to have made the case for a certainty-
based trust protocol in this regard, thus fulfilling the first of Jøsangs purposes (which is
a prerequisite for the second). Furthermore, we consolidate the development of a testbed
in which these systems can be simulated and analysed, fulfilling the second purpose. We
will now describe both of these objectives, testbed development and research, in more
detail.

3.2 Testbed Development

The short paper by Hang et al. [2008] made a first approach to establishing a testbed
for this kind of problem. We take their work as a starting point and offer the following
contributions (as laid out in chapter 4):

1. The replication of their experiments.

2. A suggested refinement to the update operator.

3. Definitions of in- and output behaviour: service providers with controllable severity
of disruptions, a client risk behaviour according to referred certainty, and feedback
into the system by the client.

4. Autonomous referrers who manage trust themselves.

5. Local discounting strategies for the client, referrers and witnesses.

In the end, we deliver a testbed system for certainty-based trust in referral networks.
Furthermore, we will publish the code we developed for these experiments in order to be
used for further experimentation (see the appendix).

Nicolas Höning
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3.2.1 Research Questions

We conduct a series of experiments in order to answer the following research questions:

Which parameter settings are important? We want to adapt the parameters which are
influential for performance1 and point to conflicts between settings.

Can the performance stabilise in highly disruptive scenarios? Service disruptions mean
that the certainty decreases quickly and thus agents will reduce their stake (and rightly
so). However, after a disruption, it would be good for performance if certainty levels
could rise quickly. Viewed on a longer time scale, If the system suffers high disruption
levels, it would be desirable if performance could be predictable (if deviations could be
held at bay).

What is the effect of differing discounting strategies? The research by Harrington Jr
[1998] indicated that a system fares best when it keeps both exploiting and exploring
agents around. On the other hand, one could argue that alignment effects favour systems
in which agents use the same discounting strategy.

3.2.2 Hypotheses

We state a list of hypotheses, to which we will refer when we discuss experiment results.

1. Parameter exploration:

a) Our referral systems can accept high percentages of defective agents without
a negative performance.

b) The structure parameters of the network (neighbourhood size, ratio of wit-
nesses to referrers) are significant to the performance as they influence the
average path length.

2. Environmental effects on discounting:

a) The environment influences what discounting strategies work best.

b) Low discounting factors are hurtful in highly disruptive scenarios.

3. Performance increases if agents are free to adjust their discounting factor.

4. Alignment of discounting factors:

a) The alignment of discounting factors among agents is crucial for performance.

b) It is good for system performance if agents employ different discounting factors.

1With performance, we mean the ability of the system to provide correct and certain assessments.
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4 Model

In this section, we describe the details
of our referral network model and imple-
mentation. We first define basic charac-
teristics. Then we explain the certainty-
based network model of Hang et al.
[2008] and his experiments (which we
reproduced). Finally, we formalise our
own contributions and extensions to the
model which are of importance to our
own experiments.

The experiment setup in this work is
based on experiments on the certainty-based
trust representation in a referral network
devised in Hang et al. [2008]. We will
introduce this work here first and then
elaborate on the differences and contribu-
tions this work makes to the model. This
is part of the consolidation phase of this
research.
Though some details about the implemen-
tation were extracted from the code that
was kindly provided by Hang et al, all code
needed for this work has been written from the ground up1. The graphs shown here are
produced by our own recreation of Hangs environment (but correlate to the ones found
there). We also note that all experiments we mention here and in the experiment chapter
are run with the same codebase.

For clarity, we remind the reader of two important variables: β denotes the discounting
factor and t.α denotes the probability of a good experience given by trust report t. Both
of these have been introduced in section 2.2.2.1.

4.1 Characteristics

We will begin by describing the model we use in basic terms, thereby following Schut
[2009]. We explain the basic workflow of a simulation run, the diversity of involved
agents and the control loop of an experiment. We then mention which parts of our model
are non-deterministic and adaptive.

4.1.1 Information flow

We model a referral network - a system in which a client needs to learn about a service
provider and relies on referral agents for this.
A service provider provides a service, the quality of which can change between being good
or bad. The client asks referrer agents he knows for information about the service quality.
On each of those referral paths, he gets referred until he finds a witness (an agent who
has direct experience with the service provider). The trust value of the witnesses gets

1See the appendix for online access to the code repository.
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aggregated along the referral paths and modified by the referrers opinions about their
referee (the agent they referred to).
Thus, information travels from the service provider as first-hand experience to witnesses.
It then becomes reputation when the client incorporates the referees opinion. See figure
4.1 for a broad overview over information flow. Note that also the client gets direct
experience. This is used to evaluate the reputation information he receives.

Figure 4.1: Information flow in the referral system

4.1.2 Diversity

As has been mentioned, there are four agent types: Client, Service Provider, Referrer and
Witness - all of which were introduced in section 2.3. Agent roles in the referral network
are strictly distinct (we also discussed this design option in section 2.3). Table 4.1 notes
their internal models, action and observation sets. When an item is noted in brackets,
it is a feature we introduce in later experiments. We will explain the behaviour of each
agent in more detail in the next section, where we will also introduce subtypes (e.g. bad
referrers and witnesses, damping providers).

4.1.3 Control Loop

Each experiment proceeds as described by algorithm 4.1. Again, brackets denote items
that get introduced later on.

4.1.4 Adaptivity

It is important to note that the model by Hang et al. [2008] already is partly adaptive:
The client updates his trust in referrers and both the client and witnesses update their
own direct experience. However, referrers are modeled very simple. We will later make
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Type Internal Model Observations Actions
Client direct experience [cont.],

trust in referrers and wit-
nesses [cont.], β [cont.]

service, referrals referral requests, (give feed-
back), (update β)

S.-Provider service plan [discr.] service requests change service quality, pro-
vide service

Referrer honesty of neighbours
[discr.], (trust in referrers
and witnesses [cont.]),
(β [cont.]), (trust in own
history [cont.])

referral re-
quests, (feed-
back)

provide referrals, (update
trusts), (update β)

Witness Direct experience [cont.], β
[cont.], (trust in own history
[cont.])

service provide direct experience,
(update β)

Table 4.1: Agent types and their internal models (and if the representation is discrete or
continuous), actions and observation sets.

them more adaptive by having them keep and update trusts about their neighbours. In
addition, we will let the client, referrers and witnesses update their discounting factor β.

4.1.5 Non-Determinism

Uncertainty is not only modeled by changes in service quality, but also by several ran-
domisations. In addition, randomisation is a good mechanism to explore the solution
space. We list them here to clarify the system behaviour:

1. Connectivity among agents: It is specified in the experiment setup how many agents
of which type each agent knows, but it is decided randomly which ones.

2. Routing: A client will ask all the referrers he knows for a referral, but then all
referrers will only pick one random neighbour to refer to. This mechanism is used
due to simplicity and its ability to explore (and hence adapt) all possible referral
paths.

3. Service quality in disruptive provider: In our own experiments, we model a service
provider whose service plan is probabilistically determined by random disruptions,
which shapes the environment for the system..

4. Deviations in simple trust reports: The simple, static referrer behaviour is to attach
a good or bad trust report to the referral. In order to introduce some randomness,
slight fluctuations are added to the experience of these trust reports.

5. Distribution of β: In the last experiments, we assign values for β to agents. Some
runs assign values randomly to all agents.
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Algorithm 4.1 Control loop for simulations

initiate agents according to experiment setup
connect agents
service provider makes service plan
epoch← 1
while epoch < runtime do

witnesses experience service and update their direct experience
client builds referral tree
client experiences service
client evaluates accuracy of referrals
client updates his trust in referrers and his direct experience
(client gives feedback to all agents in referral tree)
(client, referrers and witnesses update their β)
(referrers update their trusts in neighbours)
epoch← epoch+ 1

end while

4.2 Model of Hang et al (2008)

Hang et al. [2008] built a simulation testbed to compare the certainty-based trust rep-
resentation and their operators against other operator models like that of Josang. The
following diagram illustrates the layers and the communication structure:

Figure 4.2: Network structure in Hang et al. [2008]. Connections of one client, one
referrer and one witness are depicted.

4.2.1 Agents

The Client There is only one client, who is connected to four random referrers in each
simulation run. He keeps track of his direct experience with the service provider by a trust
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value in which he increments r or s for any positive or negative interaction, respectively.
This trust gets discounted over time by the discounting parameter β. Also, he has a trust
value for each referrer, which he updates with the update operator discussed in section
2.3.3 when he evaluates the quality of their referrals.

The Referrers There are ten referrers. All referrers know two other referrers and some
know one or more witnesses. When asked for a referral, they will provide a referral to
a random witness if they know one or a random referrer they know otherwise. This
randomness makes sure that all agents take part in the information flow (knowing a
witness gives a referrer a prominent position, but this is newly assigned for each run).
The trust opinion they attach to the referral is simple: If the agent they refer to is
honest and they themselves are honest or if they both are dishonest2, the referrer will
have a good opinion (〈r, s〉 = 〈19,+− 1〉 - +

−1 means that there is some random variation).
Otherwise, they will have a bad opinion (with r and s reversed). Referrers can be good
(always honest), bad (always dishonest) or damping (honest, change to dishonest after
10 rounds).

The Witnesses There are eight witnesses (by having less witnesses than referrers, some
referral paths will involve more than one referrer). Each witness is known by exactly
one (randomly chosen) referrer. All witnesses know the service provider and keep a
trust opinion about him. They interact with the service provider once each round and
update their trust in him accordingly, just like the client. Witnesses can be good (always
honestly returning their actual trust in the service provider when asked by a referrer) or
bad (return the opposite trust 〈s, r〉).

The Service Provider For simplicity, there is also only one service provider and the ser-
vice provided is either good or bad. This agent is equipped with a probability p to provide
good service. A service provider can be good (p = 1), damping (p = 0 for the first half
of the simulation, p = 1 for the rest) or capricious (p alternates between 0 and 1 every 2
rounds).

Note how referrers are rather simple here, only relaying information while acting on
behalf of global information (the honesty of the referee). In contrast, the client and the
witnesses show adaptive behaviour: The client updates his trust in referrers and both the
client and the witnesses update their trust in the service provider.

4.2.2 Experiments 1-3

A simulation run takes 20 rounds. In each round, the client builds a referral tree (see
section 2.3.2) using all referrers he knows and updates his direct experience with the
service provider like explained above. He then updates his trust in the referrers with the
update operator, using his direct experience and the referral tree. We do not know how
many runs have been conducted for each experiment.

2Note that this knowledge is made available to the referrer by default and not learned.
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Note that we will, as a convention, draw a graph black if it denotes a factor completely
controlled for by the experiment. In these experiments, this holds for the service quality.

The first objective is to evaluate if the opinion referred to the client by the network
matches his personal direct experience. In particular, Hang et al were interested in situ-
ations of conflicting information. These situations come about when the service quality
changes or recommenders turn malicious. Their result is that with the operators defined
by the authors (and discussed here in section 2.3.3) the trust referred to the client by the
network models the actual experience better than with other operators. In particular,
they modelled three scenarios:

1. In experiment 1, the service provider is capricious and half of the referrers and half
of the witnesses are bad. In these uncertain settings, the referred trust manages
to stay close to the direct experience of the client (see Figure 4.3). The discount
factor β is 0.0, because its effects (the updating of trust in referrers) are not of
interest in this experiment.

2. In experiment 2, the service provider is honest and half of the referrers are damp-
ing. All witnesses are honest. In three subsettings, three different values for the
discounting parameter β were employed (0.0, 0.4 and 0.8). Figure 4.4 illustrates
how higher values of β make the system more responsive, but uncertain. The au-
thors conclude that 0.4 is an acceptable compromise.

3. In Experiment 3, the service provider is damping and the referrers and witnesses
are honest. The clients discount factor β is set to 0.4. This is a showcase scenario
where it can be seen that a clients trust in an honest referrer can stabilise, even
in times of rapid change in quality. When the service provider changes its quality
completely, then the client adjusts his trust in the honest referrer quickly after a
brief period of dibelief and uncertainty. See Figure 4.3.

The general conclusion of Hang and colleagues is that the operators they defined enable
a referral network to model trust accurately. The belief representation (in combination
with the concatenation and aggregation operators) is capable of also modeling conflicting
and disruptive situations well. Malicious referrers and witnesses will be less influential
due to the update operator.

4.3 Inputs and Outputs

In this section, we clarify the notions of input and output to such a referral system and
propose a model to simulate them. We view the service quality as an external input to
the system and the clients utility as an output. Furthermore, the client might provide
evaluations and feedback as input into the system. Figure 4.5 shows a rough system
overview, modeling the referral system as the system under consideration, with input
and output connected to the client and the service provider.
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Figure 4.3: Results of Experiments 1 (a) and 3 (b) in Hang (2008)
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Figure 4.4: Results of Experiments 2 in Hang (2008)
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Figure 4.5: Overview of the system

4.3.1 Input: Disruptive service quality

In Hangs experiments, the probability of a good service changes between 0 and 1, in
alternating (experiment 1) or damping (experiments 2 and 3) manner. These changes
in quality are very regular. We propose to model a more natural pattern of disruptions
which is also less predictable.In general, changes in the quality in service provision can be
due to uncontrolled factors or due to a reaction by the provider on changes in the envi-
ronment (for instance, decreasing usage or changes in reputation as in Huberman and
Wu [2003]). We propose to model the former, since we want to make the disruptiveness
of the service a controlled variable, much like Harrington Jr [1998] did. Our focus is
on the agents in the referral systems (referrers and witnesses) and to them, the service is
an environmental factor.
To model an uncertain, possibly disruptive, and non-deterministic service quality, we
implement a service provider of whom we control the probability of service disruption (a
change from good to bad quality or vice versa). The initial p is always 1.0 and gets up-
dated according to the algorithm 4.2. The variable disruptiveness denotes how probable
it is that the service quality changes.

Algorithm 4.2 computing probability of good service quality p
p← 1
while running do

if random() < disruptiveness then {switch service quality}
p← p ∗ −1 + 1

end if
end while

Figure 4.6 visualises the average probability of a disruption in 50 test runs among three
settings, where disruptiveness was set to 0.05, 0.125 and 0.25.
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Figure 4.6: Probability of service disruptions in test run

4.3.2 Output: Client utility and risk behaviour

On the other end of the system, the client implementation should model that certainty
actually has a value. The assumption that certainty is useful has to be set into practice.
Therefore, we propose that the client can accumulate a payoff, representing the usefulness
of the system to provide utility. The client takes a risk each round. He puts a stake into
the interaction with the service provider. If the service is good, his stake gets doubled,
otherwise he gets nothing back.
In our model, the amount of the stake relates to the belief of the referral network in a
good service minus the disbelief. Thus, the stakes upper bound is the belief (if there is
no disbelief) and the lower bound is zero (if disbelief is higher than belief). Stakes rise
with certainty. So the more conflict is apparent in the trust network, the less risk the
client will take.

Coming back to Luhmanns definition of confidence in the system, which enables per-
sonal trust (see section 2.1), we can see how this simple model relates to his view. The
client’s translation from the observation of system confidence to a personal action builds
a bridge between the clients confidence in the system and the personal (and risky) trust
relation with the service provider. It is important to note that when we speak of pay-
off we do in fact consider the confidence and accuracy which the system is able to build up.

The algorithm listing 4.3 illustrates how the client proceeds, where combined trust is
the trust report gotten from the referral network after all concatenations and aggrega-
tions and direct experience is the clients updated experience. Note that the belief of a
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trust report combines the estimated probability of a good service with the certainty.

Algorithm 4.3 A client updating its payoff and direct experience

stake← max(0, combined trust.belief()− combined trust.disbelief())
if last service == good then
direct experience.r ← direct experience.r + 1
payoff ← payoff + stake

else
direct experience.s← direct experience.s+ 1
payoff ← payoff − stake

end if

4.3.3 Input: Feedback from client

In later experiments, we make the referrers and witnesses act adaptively. This means
that they control their own views of the world, first the trusts in their neighbours (which
witnesses already in Hangs experiments from their first-hand experience) and later their
own discounting behaviour. In Hangs model, referrers simply referred via a good or bad
referral depending on the honesty of the referee. This is a severe simplification of reality.
Referrers should learn themselves how trustworthy the referees are. For this, they need to
receive feedback by the client for each of their referrals. With this feedback, they can use
the update operator to update their own trust in their referees. Here, the referrer assumes
that the referee is certain in his referral accuracy (see below for our revised version of the
update operator).

4.4 The separation of trust accuracy and referral accuracy:

Revisiting the update operator

To evaluate a referrer, we might judge him by two measures: The first measure evaluates
if he refers to witnesses who tell the truth, we call this trust accuracy. The second measure
would be interested in whether the referrer can evaluate his referees himself accurately.
He might happen to refer to a bad witness or referrer, but then a good referrer would
know this and put a low trust in this path - we call this referral accuracy. In Hangs
model, the update operator relies only on trust accuracy. However, we believe that refer-
ral accuracy needs to be considered, as it helps to assess which agent on a referral path
actually accurately knows who he refers to.
Hangs update operator, described in section 2.3.3, takes into consideration the direct
experience of the client and the trust which got concatenated along the referral path of
the referrer (we could call this the opinion from his sub-network). However, during the
application of the concatenation operator along the path, the actual opinion which the
referrer had about this path becomes less observable. For example, if agent A refers to
agent B who witnesses the service of C, concatenation will take place twice on this path.

Nicolas Höning



The separation of trust accuracy and referral accuracy: Revisiting the
update operator 43

Let us now assume that either agent A or agent B has a very low opinion of the next
agent in the path while the other one has a good opinion. After concatenation the end
result will be the same (the witness report will be discounted once with a low belief and
once with a high belief). However, at this point it is hard to say who held the low belief
and who held the high belief.
We therefore propose a different update operator here. We take three things into consid-
eration:

1. the concatenated trust from the referrers sub-network conc trust, which the client
uses to make a decision

2. the actual opinion act trust, which the client has of the service

3. and (in addition to Hang) the referral trust report ref trust, which the client orig-
inally got from the referrer, reflecting the referrers opinion about his sub-network

We first compute the the trust accuracy ∈ [0, 1], which describes the usefulness of the
path that the referrer provided and is still computed like described in section 2.3.3 using
the concatenated trust tr and the direct experience td of the client:

trust accuracy =
conc trust.αact trust.r ∗ (1− conc trust.α)act trust.s

act trust.αact trust.r ∗ (1− act trust.α)act trust.s

This is then compared with the referrers original referral ref trust to compute the referral
accuracy ∈ [0, 1]. What was the referrers opinion about the path? The difference between
his opinion and the actual usefulness is the referral accuracy. When this difference is low,
the referral accuracy is high:

referral accuracy = 1− |ref trust.α− trust accuracy|

The overall accuracy should contain both of these measures. Here, we simply weigh both
equally:

accuracy =
trust accuracy + referral accuracy

2
The client can now update his trust in the referrer tref in the usual way:

tref.r = ref trust.certainty ∗ accuracy + (1− β) ∗ tref.r

tref.s = ref trust.certainty ∗ (1− accuracy) + (1− β) ∗ tref.s
This method stops laying all weight on who the referrer knows and incorporates if he can
evaluate the paths he provides correctly. As another example, consider the case where a
referrer refers to a bad witness (who gives a report contradicting the actual experience).
However strongly the referrer discounts the report with his belief, this doesn’t change the
α of the path (see also our discussion on the concatenation operator). Hangs operator
would evaluate the referrer negatively even if he put almost zero belief in the witness.
The approach we propose can distinct between both abilities of referrers and let them
both equally weigh in. Future research may try different settings for the weight between
the two notions. We note that referral accuracy is especially of importance when the
network becomes more dynamic and agents adjust behaviour more often or enter and
leave the network frequently.

Discounting experience in referral networks



44 Model

4.5 Discounting strategies and personal history

In Hangs model, only the client had a discounting strategy, because the focus of interest
was in how the client can model the referrers using the update operator. However, the
client could, in addition, also discount his own trust in the service provider. Other agents
(witnesses and -later- adaptive referrers that do keep an own history) might also discount
their memory. Our model includes all these discounting strategies.
Of course, it needs some consideration how different discounting strategies affect such
referral networks (see our hypotheses in chapter 3). We will start by looking at one of
Hangs experiments again in the experiment chapter.

Agents should be able to determine their discount rate freely. When referrals are
accurate, it seems worthwhile to have a low β in the hope of accumulating certainty.
When they are way off, β should go up in order to avoid further losses - presumably, the
old information is worthless.

For the client, we propose to tie his discounting factor β to the trust accuracy his
network delivered in the last run (see the preceding section on how trust accuracy is
computed):

β = 1− trust accuracy

Referrers and witnesses can alter their discounting factor β while receiving feedback
about their referrals. To this end, we make each agent keep a trust report about his
accuracy history, updated by feedback. (using the update operator). This trust in the
own history monitors how, from the agents perspective, referrals made from his point of
view matched reality. We can regard this personal history as learning about the world.
To use a personal history was also proposed in Wang [2009]. The agent can then update
β by using the α of the trust in his personal history. When referrals were good, β should
be low in order to gain certainty. If they were bad, the history indicates that β should
be low because old knowledge might have been misleading.

β = 1− trust in history.α

Lastly, each agent needs to make sure that all his trusts he holds will from here on get
discounted by the new β. An interesting topic is also what the β of the personal history
should be. By setting different values for this, the agent varies the influence of the past
on how much memory he keeps for referrals.

4.6 Path selection / Cycle detection

In order to avoid cycles in referral paths, we make the client check before he added an
agent to the referral tree if that agent had already been referred to on the current path
along the tree. If so, he stops following that path. Then, this path might be a dead end,
so the client retracts it upwards until it finds a branching (i.e. the next parent is used to
refer to more than one node and is thus still useful).
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In the setup of Hang et al. [2008], there were many witnesses compared to referrers,
making it likely that paths were short. This measure avoids cycles.
In our case, we need a better solution, because these conditions would not hold in all of
our experiments. We want to investigate effects of small and large values of the neigh-
bourhood size parameter k and the ratio between witnesses and referrers l.

Another approach would be to keep a list of all visited nodes in order not to visit
any node twice. This would have the effect of providing a partial solution to the path
selection problem we explained shortly in section 2.3.3.4. Double counting would be
avoided because the client stopped following a path when he would visit a node twice.
Of course, this solution would be partial because it is not sensitive to which path would
have been more desirable to follow. An idea would be to order the list of referrers before
collecting their referrals, which would implement a simple selection strategy.
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5 Experiments

In this section, we describe experiments
we conduct in terms of setup and results.
We start with explorative scenarios for
parameter analysis of our model and then
conduct adaptive scenarios.

We run experiments in three phases. As
has been said in chapter 4, we recreated
the experiments by Hang et al. [2008]
in a consolidation phase, in which we ex-
panded the simulation code and used these
experiments as integration test cases (for
more cases see the appendix). Here, we
conduct an exploration phase, in which we introduce our disturbance/risk model and ex-
plore the settings concerning the honesty of agents.
Furthermore, in the adaptation phase, we add more adaptiveness to the referral system
- referrers control the trust they have in their neighbours and all agents get control over
their discounting strategy.

5.1 Design

Tables 5.1 and 5.2 show the dependent and independent variables for experiments from
our exploration and adaptation phase. We run experiments with 2kfactorial design.
Our simulations are longer than Hangs experiments (50 epochs), to observe effects with
longer reaction times.
Each experiment setting ran 50 times and we show the averages along with the sample
standard deviations. In these scenarios, all settings are fixed for the whole run of an
experiment. Exceptions are noted in the setup description. We number our experiments
starting with four, to keep the numbers one through three denoting Hangs experiments.
We refer to the hypotheses made in section 3.2.2 when the results indicate that they
can be accepted or refuted. We conduct statistical T-tests when the difference between
outcomes is crucial to the discussion.
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Name Measured In
Client trust in an honest referrer (α and
certainty)

3a

Client payoff 4a, 4b, 5, 6, 7, 8, 9
Trust among referrers (α and certainty) 7
β in referrers and witnesses (values and
standard deviation in single runs)

9

Table 5.1: Dependent variables

Name Possible Values Varied In
Epochs 50 -
N (number of referrers + witnesses) 18, 24 7
l (ratio of witnesses to referrers) 0.2, 0.5, 0.8, 1.0 7
k (neighbourhood size of client) 0.4 -
k (neighbourhood size of referrers) 0.2, 0.3, 0.5, 0.8 7
Provider type damping, disruptive 3a, 4a
Probability of service disruptions 0.05, 0.125, 0.25, 0.33 4b, 8
β (discounting factor) of client 0.0, 0.4, 0.8 4a, 4b
β of witnesses 0.0, 0.4, 0.8 3a, 4a, 4b
Number of bad referrers 0, 4, 8 5
Number of bad witnesses 0, 1, 4, 7 5, 6
Referrers adapt trust in neighbours no, yes 6, 7, 8, 9
β of (adaptive) referrers 0.2, 0.4, 0.5, 0.8, random 8
Referrers and witnesses adapt β no, yes 9

Table 5.2: Independent variables and which experiments vary them. When they are not
varied, the (bold) default value is used.

5.2 Exploration

5.2.1 Experiment 3a: Discounting Alignment

We remodel the third experiment of Hang et al and make the witness use different dis-
counting factors.

Setup It is unclear to us if the witnesses in Hang et al. [2008] used any discounting
at all for their trust in the provider. However, when we tried different values for the
witnesses β in experiment 3 (where the client used β = 0.4 for his trust in the service
provider), we found that the results changed significantly.

Results The trust in the honest referrer stabilises more quickly after the service disrup-
tion when the client and the witness are discounting their trust in the service provider
at the same rate (β = 0.4). Figure 5.2.1 shows the results for Hangs experiment 3
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(c) witness β = 0.8

Figure 5.1: Experiment 3 with differing values of β for the witnesses
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with varying β for the witnesses. Clearly, with the witnesses using β = 0.0, the client
has a hard time adjusting his trust in the honest referrer, since a lot of old information
still flows through the network. With the witnesses using β = 0.8, information flowing
through the network is newer than what the clients memory of the service reflects, so it
takes time until he updates his trust in the referrers correctly.
We conclude that hypotheses 4a seems to hold: differing discounting strategies
matter for reactiveness. However, hypothesis 4b does not seem to hold: it is benefi-
cial if agents use the same β. It is an issue in need of investigation, however, if it can be
generally assumed that aligned discounting factors will result in the best performance.
For now, we indicate that it might be harmful for a referral system if agents use different
discounting strategies, i.e. when their memories are out of sync. We will return to this
question in the adaptation phase (experiment 8).

5.2.2 Experiment 4a and 4b: Disruption/Risk-Model

In this experiment, we are interested in the effects for client utility when trying out
different values for the service quality disruptiveness and the recency of information
flowing through the network.

Setup All referrers (10) and witnesses (8) are honest. We vary the disruptiveness of
service quality changes and the discount factor which the client and all the witnesses use.
Due to the lessons from experiment 3a, the client discounts the trust in the service
provider with the same β as the witnesses, so in this experiment we control how old
all information flowing through the network is, ruling out any conflicts due to differing
discount rates among agents.
In experiment 4a, the service provider is damping, just like in Hangs experiment 3 and
we are interested in the effect on performance. In experiment 4b, we actually employ the
service provider we sketched in section 4.3, whose service quality changes abruptly, given
the disruptiveness setting.

Results Figure 5.2 shows how discounting affects performance when the service sud-
denly drops. This service provider is very predictable before and after the only disruption,
so the setting β = 0.0 is generally the most profitable. However, while having β = 0.4
or β = 0.8 provides stability immediately after the disruption, β = 0.0 makes it hard to
provide accurate judgements for a while after a server disruption.

Figure 5.3 shows results with the disruptive service provider. We note how using a
low discount factor (β = 0.0) is highly profitable when the service quality is stable (just
as in experiment 4a), as it can rely on more certainty and risk higher stakes. But this is
less and less the case as the service becomes more disruptive (as the disruptiveness factor
increases). With a disruptiveness factor of 0.25, it becomes more useful to use a higher
β, like 0.4. When service disruptions are more common, the profits of β = 0.4 surpass
those of β = 0.0. This indicates that for a given uncertainty in the environment (here: a
given disruptiveness factor), there is an optimal discounting factor. The observations
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Figure 5.2: Results of Experiment 4a

validate our second set of hypotheses ( 2a: The environment is highly influential
on the success of discounting strategies; 2b: Low discounting is hurtful in disruptive
scenarios). We also not that the variance is relatively high with β = 0.0 under high
disruptions, i.e. the payoff becomes less predictable.

5.2.3 Experiment 5: Populations with mixed honesty

Here, we introduce some dishonest referrers and witnesses and observe the effect on the
system utility (the clients payoff). We do this with non-adaptive referrers since we do
not model dishonest adaptive referrers.

Setup As usual, the client and witnesses use β = 0.4 and the service disruptiveness fixed
to 0.125. We run experiments with 8, 4 and 0 bad referrers and 7, 4 and 1 bad witnesses.

Results Figure 5.4 shows the payoffs for runs with 8, 4 and 0 bad referrers. In each
plot, we see the graphs for 1, 4 and 7 bad witnesses. If we compare these payoffs with the
setting from experiment 4b, in which all agents were honest, we note how wrong informa-
tion hurts certainty and thus the payoff. This is by design as conflict in the information
decreases certainty (see section 2.2).
For both bad referrers and bad witnesses holds: if there are too many of them, the system
generates significantly less payoff. If all witnesses but one are bad, the system makes no
profit (and only when only 2 referrers are bad can a loss be avoided). If 8 out of 10 re-
ferrers are bad, the system can make a profit, provided there are enough good witnesses.
Interestingly, both factors can cancel out the bad effects of the other. For example, con-
sider the runs with 4 bad witnesses (green line). It takes more than 2 good referrers in
the system to make a profit. On the other hand, if there are 8 bad referrers, it takes
almost all witnesses (7) to be good to make a profit.
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(c) disruptiveness = 0.25

Figure 5.3: Results of Experiment 4b
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Figure 5.4: Results of Experiments 5
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This experiment also tests for the systems capability to lay more weight on true infor-
mation. The client updates his trust in referrers and thus weighs how much he listens to
the opinions they provide. We conclude that hypothesis 1a holds: high percentages
of dishonest information can be tolerated by this system (although it hurts performance,
but losses were really low).

5.3 Adaptation

In a further set of experiments, we added adaptive behaviour to the agents. To this end,
we implemented a feedback from the client to the referrers about the usefulness of their
referral (see section 4.3.3). Referrers are equipped with their own trust table for each
referrer or witness they refer to. They update these trusts after receiving feedback. Note
that referrers still chose randomly which agent they will refer to (with a preference to
refer to witnesses). It would make sense to refer to the agent they trust most, but for
now this stabilises the system too quickly and makes comparisons harder.
We will also enable agents to adjust their discounting factor β autonomically.

5.3.1 Experiment 6: Adaptive Referrers

The initial experiment in which referrers are made more adaptive. Until now, they relayed
with a very positive or very negative trust, relying on global knowledge if the referree is
generally honest. Now they start with an empty trust in all their neighbours and update
that when the client gives feedback about the referral (see chapter 4).

Setup The discounting factor of all agents is set to 0.4. There are three scenarios, in
which we inject 1, 4 and 7 bad witnesses, respectively.

Results Figure 5.5 shows that the trust among referrers is high. However, certainty
does not rise above 0.3, due to discounting along the paths when trust reports get con-
catenated. This influences the risk behaviour of the client, who earns less payoff (note
how the scale of the plots have changed). In a similar scenario of experiment 4, his payoff
rises to over 6.0 after 50 iterations.

5.3.2 Experiment 7: Structure

We vary the number of referrers each referrer has as neighbours. In addition, we are
interested in the effect of the ratio between witnesses and referrers.

Setup The model is run with different connectivity settings. We vary the neighbour-
hood size k for referrers, which denotes the ratio of referrers known to a referrer, and l,
the ratio of witnesses to referrers present in the system. Note that the system in Hang
et al. [2008] had 10 referrers - the client knows 4 of them, so Hang uses a k of 0.4 for
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Figure 5.5: Results of Experiments 6
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the client. Referrers have two referrers as neighbours, so they have a k of 0.2. He also
uses 8 witnesses, which would denote his l at 0.8. These are also the settings we normally
use.
For this experiment, we increase the number of agents employed to 24 (the client and the
service provider not counted) to make connectivity effects clearer. We use the values 0.2,
0.5 and 0.8 for k (which translates, to different actual rounded values, depending on l)
and 0.2, 0.5 and 1.0 for l (which translates to 4, 8 and 12 witnesses present, respectively).
For instance, if l = 0.5, we have 8 witnesses and 16 referrers. If k = 0.2, then each client
and referrer has 16 ∗ 0.2 = 3.2 ≈ 3 referrers as neighbours.
In general, one would expect the referral paths to become longer with decreasing k or
l, since this makes it less likely for a path to a witness to be completed with few refer-
rals. Longer referral path should lead to lower certainty, as beliefs are concatenated and
multiplied.

Results We note how l does affect the performance. If there are more witnesses present,
performance rises. We looked at average path length and confirmed that paths get longer
with smaller values for l (in a range between 2.2 and 4.2). Longer paths indeed mean
reduced certainty and thus reduced performance.
Interestingly, k has no significant effect. This is due to the random routing among referrers
- referrers have no preference who to refer to when they know no witness. This could
change if smarter routing strategies are employed - we assume that it is beneficial to refer
to agents whose connections promise a shorter path.
The results confirm our hypothesis 1b (structure affects performance). However, the
effects of l are clearly not as strong as the honesty effects from experiment 5. This leads
us to believe that the information quality is the more important factor for our system.

5.3.3 Experiment 8: Discounting Distributions

The same general amount of discounting in the system is employed among the client,
referrers and witnesses in different ways and the effect on these scenarios on the system
performance is observed.

Setup Three scenarios model different distributions of discounting variables among re-
ferrers and witnesses. It is important to notice that the same amount of discounting will
be in the system, only distributed more or less evenly among the agents. We chose 0.5
for this number. In one scenario, all agents will use β = 0.5, in the second all βs will be
random ∈ [0, 1]. In the third scenario, each agent is equally likely to be assigned β = 0.35,
β = 0.5, or β = 0.65.
We set the disruptiveness to 0.33 in this experiment, in order to create an environment
where 0.5 is a reasonable value for β. Note that from now on, we let the experiments run
100 iterations, in order to observe effects with time dynamics.

Results In figure 5.7 we can see the different deviation levels in the values for β for each
scenario (note that there are still fluctuations as we only record the agents that took part
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Figure 5.6: Results of Experiments 7
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Adaptation 57

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  10  20  30  40  50  60  70  80  90  100

st
an

da
rd

 d
ev

ia
tio

n 
in

 b
et

as

iteration

random
all0.5

0.35_0.5_0.65

(a) The standard deviations among values for β

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70  80  90  100

pa
yo

ff

iteration

random
all0.5

0.35_0.5_0.65

(b) Payoffs

Figure 5.7: Results of Experiments 8
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in the referral tree which the client builds in the current round). There are of course no
deviations when all agents use β = 0.5, some more when they use three different values
and about 0.3 when β values are completely random. Coming back to our intuition from
experiment 3b, we can see that hypothesis 4b does not hold: The scenarios with
small deviations in β among the agents are more successful. Also, they have less devia-
tions.
In order to test for the significance of the results, we conducted Welsh Two-Sample Tests
considering the last iteration to test for the difference between the payoff in the scenario
where all agents use 0.5 and the (mixed) scenario in which agents us three different values
(t = 4.4969, df = 88.493, p − value = 2.083e − 05, mean performances were 1.055 and
0.675) and between the mixed scenario and the random one (t = 1.2066, df = 72.438,
p− value = 0.2315, mean performances were 0.6758 and 0.5446).
We attribute these significant effects to the higher probability of referral paths consisting
of agents who use the same β.

5.3.4 Experiment 9: Adaptive Discounting

Agents adapt their discounting factor β using the accuracy of their referrals.

Setup All β values are initialised randomly ∈ [0, 1]. In the static scenario, all β values
will stay that way during the runs. In the dynamic scenarios, the client, the referrers
and the witnesses are enabled to adjust their β (see section 4.5 for technical details). In
short, they keep a trust in their own history of accuracy, according to which they adjust
their discounting - when they have high trust in their own history of accuracy, they will
lower their β. In this experiment, the β of this trust in the own history (which we will
call βp here) is adjusted for in two scenarios. It is either set to 0.0 (meaning that all
history of accuracy is kept) or 1.0 (meaning that no history of accuracy is kept).

Results In figure 5.8, we see that payoff-wise, the dynamic scenarios fare much better
than the static scenario. We confirm that hypothesis 3 holds: It is beneficial to
adjust β values according to the situation at hand.
If we look at the actual values of β values, we see that the static agents stay at an average
β of 0.5 with a standard deviation at around 0.3, which is expected with a random as-
signment. We also see that agents in the dynamic scenarios choose lower β values around
0.2 with a standard deviation at around 0.1. In fact, the graphs of single runs show very
low β values and short spikes whenever disruptions in the service happen.
So what might actually lead to improved performance? This can have two reasons: First,
the agents might have found a better β for the given uncertainty in the environment. It
makes sense to forget quickly when the circumstances changed (thus the spikes) and to
build up certainty in stable times. Second, assume the agents settle on some β due to the
algorithm we chose, but let us disregard if it makes any difference on the system perfor-
mance. Still, the lower deviation among the values might benefit the system performance
(which would relate to our findings from previous experiments and hypothesis 4a).
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Another observation on the system level is that agents do equally well, performance-wise,
with βp = 0.0 or βp = 1.0 for the personal history. They do not seem to profit from the
ability to generalise over the past. However, with βp = 0.0, deviations in β values are
significantly lower. We conducted Welsh Two-Sample Tests to test for differences when
using βp = 1.0 and βp = 0.0: in β values (t = 5.0917, df = 88.004, p−value = 1.999e−06,
mean beta were 0.272 and 0.157) and between the deviations (t = 11.074, df = 97.204,
p − value = 2.2e − 16, mean deviations were 0.31 and 0.11). The differences are both
significant. This observation indicates that agents who remember their personal history
(βp = 0.0) change their β values less abruptly, notably without hurting performance. This
approach seems more natural and might prove beneficial for the agents in more complex
settings (but in these scenarios, it does not make a difference for performance).
Finally, we note how standard deviations of the general β values among agents tend to
rise with the lifetime of the system. This effect is a hint that complex dynamics lie in
this setup, yet to be discovered and explained. It could be that agents react to changes
differently, according to their role or position in the network and differences build up.
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Figure 5.8: Results of Experiments 9
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6 Discussion

6.1 Contributions

In this thesis, we worked on the trade-off problem between certainty and recency in
information systems. We established a testbed for certainty-based referral trust. We
took the work by Hang et al. [2008] and extended it. Among other contributions, we
discussed a new way of looking at the update operator, defined behaviours for the service
provider and the client which makes analyses of disruptive environments possible and
implemented a strategy for agents to update their discounting rate (their forgetting rate)
autonomously. Our experiments explored the influence of honesty and connectivity as well
as the effects of different discounting distributions and scenarios with local adjustments
of discounting.

6.2 Conclusions

While Hang et al have shown that a trust network in which agents use certainty-based
trust is reactive, we were interested in performance. We defined performance in our model
as the ability to generate truthful and certain information as output, on behalf of which
a client can make successful decisions about his interactions with the environment.
The results from our experiments showed us that such a referral system can be generating
truthful and certain information in a stable manner. We also learned that the amount
of honest information has more impact on the performance than structural parameters.
Of course, this might change if strategies are employed which target the structure of the
network and use more intelligent routing.
More importantly, our findings suggest that the distribution of discounting strategies
among agents is a crucial factor for reactiveness and performance. Even if the same
overall amount of discounting takes place in the whole system, the variance in applied
strategies can make significant differences. We presented a simple strategy for agents
to choose their discounting strategy freely, and saw that the system can generate sig-
nificantly more performance this way. Patterns of discounting factors developed more
naturally (with less deviations) when agents collected experience about their previous
accuracy in a personal history. From our experiments, we expect complex dynamics at
play when discounting factors are defined locally by all agents.
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6.3 Future Work

In closing, we propose several research ideas which might lead to further insights:

Discounting Of course, the local strategies with which to choose the discount factor can
be developed further: For instance, should agents be more forgiving? Or would it be
a useful approach to implement a swarming behaviour where agents use a discounting
factor which is similar to what their neighbours use? Basically, any machine learning
algorithm could be tried, but we note that finding the best discounting factor is not an
easy task: The environment is a moving target and feedback is supplied by third parties
(if you are not a client), who themselves relied on network input. Of course, this also
means that it is an interesting problem.

Structure Regarding the network-structure, one could try to use several clients and/or
several service providers in order to analyse what this means for the flow dynamics in the
system. One could also give agents more freedom to decide who to refer to. There are
many simple heuristics to be tried - the first of which is of course to refer to the agent(s)
one trusts the most (but caution has to be taken not to reduce the set of choices each
agents considers by this). One more structure-wise approach is to let agents enter and
leave the network and watch adaptability as trusts have to be built anew. A hard problem
in many trust networks called ”whitewashing” (Feldman et al. [2006])) is that agents
can leave and come back with a new identity and a clean slate. A certainty-based trust
representation might be suited well to tackle this problem.

Strategies Of course, there are strategy considerations. One could let clients acvtively
make use of their own direct experience with the provider, which we left out. We made
a distinction between trust accuracy and referral accuracy, but simply weighed both
equally. One could try to use different weights for these concepts when agents update
their trusts. Referral accuracy might prove worthwhile to maintain certainty in the trust
towards agents when changes in the population happen often. It would also make sense
to add incentives for referrers and witnesses. Like in the ART testbed (Fullam et al.
[2005]), agents could be paid for referral services (this would also work well with heuris-
tics in routing, since agents that are seldom asked for referrals could lower their price).

Our preferred scenario for further research would have clients share parts of their
generated utility as payments for referrals and let agents leave (for instance if they become
too poor) and return. This scenario would open many challenges and be of interest for
real-world systems.
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A Appendix

A.1 Resources

The program code for running the described experiments can all be found online at
http://www.assembla.com/spaces/trustcertprop.

You can find a code browser there and a subversion code repository at http://subversion.
assembla.com/svn/trustcertprop that can be checked out anonymously. Specifically,
the state of code used to run the experiments in this thesis has been frozen at http:

//subversion.assembla.com/svn/trustcertprop/tags/masterthesis.

Note that the experiments need an experiment running suite in order to be executed
and to create graphs. This was developed by Nicolas Höning and can be found at
http://www.assembla.com/spaces/combex.

A.2 Integration Testing in complex system development

When working on a complex multi-agent system, we find it to be quite challenging to
develop features and predict for every change which consequences it might have. This
is especially true if a system contains certain randomisations. We believe it to be good
practice for complex system developers to use simple scenarios (which test a combination
of settings whose results are clearly predictable) for integration tests (Beizer [2003]).
When the graphs look as expected, we can be more confident that our change did not
disrupt any expected system behaviour.
For example, we found that the idea of stability versus complete disruption, present in
in experiment 3 by Hang, provides good test cases for our system.

As first test cases, we conduct three extension cases of experiment 3, where the service
provider either stays good throughout the whole run, starts bad and then upgrade to
providing good service after 10 runs or starts bad and stays bad throughout the whole
run. Figure A.1 shows those extra three scenarios we ran for experiment 3b and their
(expected) behaviour. During development, they helped in finding several problems with
referral tree building.

Furthermore, we were interested in the effect on trust in referrers when all available
information was bad. We included in our test suite a scenario like the one before, the
only difference being that all witnesses were dishonest and referrers adapted their own
trusts in their neighbours. Figures A.2 and A.3 show the results. Note how trust in
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Figure A.1: Results of Integration Test using Experiment 3
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referrers is bound to about 0.5, which corresponds to their ability to refer adequately.
The other 0.5 are missing since they don’t know any credible sources. See our discussion
about the update operator in section 4.4.
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Figure A.2: Results of Integration Test using Experiment 3 with Bad Witnesses: Good
and Bad Service
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Figure A.3: Results of Integration Test using Experiment 3 with Bad Witnesses: Damping
and Upgrading Service
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